
Machine Learning for Semiconductor
Test and Reliability

(Invited Paper)

Hussam Amrouch∗, Animesh Basak Chowdhury†, Wentian Jin‡, Ramesh Karri†, Farshad Khorrami†,
Prashanth Krishnamurthy†, Ilia Polian∗, Victor M. van Santen∗, Benjamin Tan†, Sheldon X.-D. Tan‡

∗ Computer Science Department, University of Stuttgart, Stuttgart, Germany
† Tandon School of Engineering, New York University, New York, USA

‡ University of California, Riverside, California, USA
Email: amrouch@iti.uni-stuttgart.de

Abstract—With technology scaling approaching atomic levels,
IC test and diagnosis of complex System-on-Chips (SoCs) become
overwhelming challenging. In addition, sustaining the reliability
of transistors as well as circuits at such extreme feature sizes,
for the entire projected lifetime, also become profoundly difficult.
This holds even more when it comes to emerging technologies
that go beyond convectional CMOS in which the underlying
physics are not yet fully understood. In this special session paper,
we describe the usage of machine learning in several test and
reliability related areas. First, we demonstrate the vital role that
machine learning can play in IC test showing the importance
of explainability as a frontier for machine learning in IC test.
Afterwards, we discuss how novel physics-informed neural net-
works (PINN) can be employed to model electrostatic problems
in VLSI designs. This is essential to mitigate the deleterious
effects of electromigration, which is the key source of reliability
degradations for interconnects in circuits. Finally, we discuss
the major sources of reliability degradations at the transistor
level in advanced technology nodes such as transistor aging
phenomena and self-heating effects as well as we demonstrate
how machine learning approaches can further help in developing
reliable emerging technologies.

Index Terms—Machine learning, IC Test, Reliability, Electro-
migration, BTI, HCI, Emerging Technology

I. INTRODUCTION

Machine learning (ML) is revolutionizing our lives. Prob-
lems that were considered intractable a few years back, from
generating naturally-sounding speech [1] to detecting fake
faces in videos [2], are becoming practical now. While most
of the underlying ML concepts had been known since years
and decades, ML’s recent breakthrough has one major driver:
the availability of sufficiently fast and powerful hardware to
run sophisticated ML computations. Even before the advent of
ML, computing was characterized by sustainable exponential
growth enabled by a fundamental positive feedback loop:
Advances in electronic devices and design methods lead to
better computers, whereas better computers facilitate the de-
velopment of improved electronic devices and design methods.
ML is a new ingredient in this “virtuous cycle” of computing,
with the potential of establishing more and stronger positive
feedbacks. If using ML for designing computers will result
in more computational power becoming available, ML tasks
themselves will be the first ones to profit, enabling more
advanced types of ML and even better effects on ML-enabled
design automation and all the other ML-enabled applications.

Design Fabrication Test Operation

Circuit
testability

Hardware Trojan
detection

Wafer-level
diagnosis

Scan-chain and
fault diagnosis

Board-level
diagnosis

Test
compression

Reliability of
emerging transistors

and interconnects

Fig. 1: Design steps of electronic circuits to ensure reliable
and secure chips.

Design of electronic circuits is a complex and distributed
process broken down in many steps, as seen in Fig. 1. In
this paper, we focus on ML in one important sub-field of
this process: achieving a circuit’s quality, both directly after
manufacturing (test) and during its lifetime (reliability). Test
and reliability are essential features of today’s electronics,
which is often intended for use in critical applications, from
industry automation to self-driving vehicles. When consid-
ering these features, the still-exponentially-growing size and
architectural complexity of circuits being designed meets with
intricacies of new manufacturing technology nodes. Tradi-
tional analytic models for, e.g., reliability prediction start
losing their accuracy because second- and third-order effects
become prevalent, calling for replacing familiar closed-form
equations by trained neural networks. Traditional algorithms
for, e.g., fault diagnosis or test point insertion reach their
limits for multi-billion-gate designs, and alternative ML-based
approaches can provide reasonable alternatives.

II. EXPLAINABILITY AS A FRONTIER FOR MACHINE
LEARNING IN IC TEST

A. Overview

The increasing complexity of IC designs naturally motivates
the use of machine learning (ML) techniques for overcoming

scalability issues in IC test [3], [4]. For instance, problems
such as test point insertion have been tackled through the
use of ML models, obviating costly fault simulations [5],
[6]. However, despite apparently promising results, these ap-
proaches appear to suffer from potential robustness issues [7]
stemming in part from the “black-box” nature of ML models
(especially, state-of-the-art deep learning approaches). When
using any ML model, a fundamental question often arises: why
did an ML model make a given decision? As we move towards
integration of ML in-the-loop, there is growing appreciation
of the need for explainability and interpretability of models
and their decisions/predictions, especially in “mission-critical”
applications [8]. Can explainability approaches benefit the next
steps for ML in IC test? In this section, we will explore
explainable ML and pose open areas for future exploration.

B. Explainability Approaches for Machine Learning
Explainability (a term often used interchangeably with in-

terpretability) is concerned with the degree to which humans
can understand the cause of a decision [9]. The quality of an
explanation depends on myriad factors, typically intuited by
practitioners in a given domain1 and is crucial for building
trust in intelligent, autonomous systems. Explainability makes
models more transparent and thus more accountable; insights
into otherwise opaque models can assist with identifying
biases, enabling sanity checks, and debugging models that fail
unexpectedly.

Some ML models are intrinsically explainable to a varying
extent, while numerous post hoc techniques can be used to
design interpretable approximations of complex models. For
example, models such as linear regression and design trees
make decisions/predictions in a fairly open way. Humans
select and engineer meaningful features from the data upon
which the model learns to make predictions; the effect of
feature values in an instance (sample) on the overall prediction
can be understood by examining the learned weights together
with the feature value. Typically, approaches like linear re-
gression oversimplify the decision space which can limit the
model’s accuracy for complex problems.

Other ML approaches, such as deep learning, are consid-
erably more opaque in what they learn. For example, in a
convolutional neural network used for image classification, the
inputs are usually raw pixel values; each layer in the neural
network, comprising large quantities of artificial neurons with
weighted inputs and non-linear activations, transforms the
input. Manual inspection to try to link output predictions to
individual pixel values is not helpful for understanding why
a prediction is made. Essentially, deep learning models learn
to extract features without any requirement that the learned
features are human-interpretable. To improve explainability,
post hoc techniques can be used to produce additional models
that provide an explanation. Examples of such techniques
include SHAP [12], which predicts the “contribution” of
each feature to a given prediction by approximating Shapely
values and LIME [13], where local explanations are derived

1See the survey by Miller [10] for a comprehensive take on social science
and philosophical insights and their intersections with explainable AI.

by perturbing an instance of interest, using the “black-box”
classifier to get labels, and training a linear classifier on these
new samples around the instance of interest.

C. Uses for Explainability

Explainability provides insight into which features, and the
(relative) importance of those features, factor most when an
ML model makes a decision. In other words, we can use
explainability techniques to characterize and scrutinize trained
models—we can try to see if models learn things that make
sense at a fundamental level. This is readily apparent in
simpler ML approaches that are more explainable; for instance,
Zhang et al. proposed a single-layer artificial neural network
for board-level diagnosis and repair [11] where the neuron
weights provide a way to interpret the relative importance
of the input features (in this work, the inputs are fault
syndromes). An explanation that appears contradictory to a
test engineer during model validation can guide inspection of
the training data.

Understanding the reasons behind a model’s decision can
also assist with intervention; in other words, given an expla-
nation, one can be guided towards more appropriate actions.
We illustrate this in Fig. 2, where the added explanation can
inform subsequent design decisions (either taken by a human-
in-the-loop or by autonomous means). There could be different
feature values that lead to the same model output, reflecting
different root causes which may not be obviously apparent
from the data but clearly identified by the ML model. For
example, test point insertion works to address “hard-to-test”
locations in a design. An ML model can be trained to classify
such nodes, given a netlist—explaining whether a node is hard
to test because of controllability or observability (or both) can
guide the designer towards the type of test point to insert.

ML
model

Design
Artifact

Prediction Design
Decision

Design
Step

Design	Choice

Explanation

Fig. 2: Explainable ML-in-the-loop can help guide design
decisions

In Table I we present a number of example applications in
IC test and potential explanations that might be useful, either
by providing additional context for a given decision, or pro-
viding a way to characterize what a model may have learned.
However, the usefulness of explainable ML is determined in
part by the nature of the data and the given application—
this can also affect the upfront choice of type explainability
sought (whether intrinsic or post hoc). In the next subsection,
we provide a summary of recent work that explored the use
of an intrinsic ML approach.

D. Example: SiFS for Test Point Insertion

As an example of using explainable ML, let us discuss
the study by Krishnamurthy et al. [14] and the multi-stage

TABLE I: Potential Uses for Explanations From Machine Learning Models in IC Test Applications

Application Inputs Output Predictions Potential Explainability Contributions

Wafer-level Diagnosis Image of the wafer +
specification test result Faulty/Clean Die label

Explanations of the factors that contributed to a classification (e.g.,
relative weight of proximity vs. resemblance to learned pattern(s))
which can offer guidance for subsequent testing

Scan-chain Diagnosis Failure Vector Faulty Scan Cell
Explanations as to which output has the most impact on the
prediction could guide closer inspection of the corresponding logic
cone and scan cells

Fault Diagnosis Log files Successful/failed diagnosis, Classify type
of failure, large/short runtime

Explanations as to the possible causes for which the model
succeeded/failed to generate diagnostic report. For the type of
failure, the factors responsible for reporting combinational/sequential
logic failure, and presence/absence of intermediate debugging
elements’ log data responsible to generate faster/longer time to
generate diagnostic report.

Board-level Diagnosis
Failure syndrome data
from early stage
production failed boards

Defective component in recently
manufactured boards

Explanations as to which syndrome(s) contributed most to the
predicted defective component. (e.g., as in [11])

Test Compression ATPG log data Optimal PRNG length
Explanations to see which features of the log data are important and
sanity checks that the decision boundary learned is related to the
PRNG length

Circuit Testability
SCOAP, COP, Structural
features (fanout, type of
gates etc)

Optimal test insertion location Explanations to see which feature(s) are used by the model to make
predictions as well as sanity checks that the models are learning

Hardware Trojan
Detection

Gate-level netlist,
(Random/Directed)
Simulation Results

Suspected Hardware Trojans Explanations for suspicion: structural similarities to training samples
or mostly because of simulation inputs/outputs

reasoning process that is entailed in training an intrinsically
interpretable model for “human-readable” explanations. This
work applied a technique called Sentences in Feature Subsets
(SiFS) [15] to node classification for test point insertion,
with the objective to predict nodes in a netlist as hard-to-
test or otherwise, as illustrated in Fig. 3. While the desire
for high accuracy is a given in any application, motivations
for explainable ML in this case study included the desire to
address the following:

• Which features in the data are relevant for classification?
Designers have intuitions as to several features that could
help with the target objective. In this example, including
structural features like (logic-level) distances to (from)
primary outputs (inputs), as well as SCOAP values in a
node’s neighborhood).

• What combinations of features (i.e., combinations of
inequalities involving subsets of features) can be used
to classify? While there can be several combinations
that correlate well with the desired predictions, the exact
combination and relative importance of the features is
non-obvious up front.

• Given an input data point, what is the best context-
sensitive explanation for classification of that data point?
Once trained, experts can easily scrutinize the trained
model’s decision-making for a given input, as well as
across inputs, potentially revealing insights into what has
been learned. This can be especially useful, particularly
in light of suggestions for considering robustness issues
in ML for IC test [7].

SiFS produces a classification model as an OR-combination of
a set of “sentences,” where each sentence is defined as an AND-
combination of “words”—each word is an inequality involving
a subset of features. As explained by Krishnamurthy et al. [14],

Graph-based
Feature

Extraction

(I*f2 + f1) > X AND fn > P
f0 > X AND (f4 + J*f7) > Y AND

f3 > G
f3 > W AND f2 > Q...

.....

Sentence-based classifier
f0 > X AND (f4 + J*f7) > Y AND f3 > G

f0 > X AND f4 > M AND f3 > Z

(I*f2 + f1) > X AND fn > P

f3 > W AND f2 > Q...

"Hard-to-test"

Explanation
Gate-level Netlist with

node-level features

Fig. 3: The SiFS-based classification flow for identifying hard-
to-test nodes [14]. After the training phase, only the features
that appear in the “sentences” need to be extracted from unseen
designs. The ML model produces both a predicted label as well
as a context-sensitive, “human-readable” explanation.

each sentence acts as a classification rule, estimating a sub-
volume of an overall volume in feature space where training
samples of a given class are situated. If any of the learned
sentences (rules) are satisfied by a new sample, that sentence is
considered “triggered”. As a single sample can trigger several
sentences simultaneously, the “best” sentence can be picked
by selecting the sentence with the highest activation value; this
sentence provides a “human-readable” explanation for a given
decision as a subset of features and combinations of features
as a Boolean combination of inequalities.

Thus, to decide which features are most relevant, the overall
architecture is multi-step: feature down selection is first per-
formed by training random forests with random feature subsets
and iteratively mutating/evolving the feature subsets using
genetic algorithm-based search. Random forests, themselves
intrinsically explainable to some degree, allow one to estimate
the utility of a feature. These most relevant features are then
used in the sentence-based classifier training process, where
the “goodness” of a sentence is in part influenced by its
complexity (taken as a weighted sum of the effective word
lengths in the sentence and the number of distinct features in
it). This captures the intuition that should be more compact

for better “readability” of an explanation (viz. Occam’s razor).
As an example of the type of sentences (explanations)

involved in a SiFS-based classification, consider the example
illustrated in Fig. 4. This sentence was picked as best for the
majority of test data points correctly classified as hard-to-test
for stuck-at-0 faults. The overall classifier for these types of
nodes was reported to have an F1 score of 0.942 (see §4.3 and
§4.4 of reference [14]). Recall that sentences comprise words
in the form of inequalities of feature values; in this example,
the SiFS model learned to recognize SCOAP observability of
the node, observability of predecessor nodes, paths to primary
outputs, and SCOAP controllability-1 as relevant features for
the classification task.

How is this explanation useful? Each “word” captures a
necessary condition, learned by the ML model, for classifying
a sample into a given class. In this example, a test engineer
can inspect the sentence and judge whether it is consistent or
contradictory to the engineer’s intuitions by interpreting the
presence/combinations of features in each word, the relative
weights for each feature, and the overall sentence. In this
example, the feature values are always positive.

In Fig. 4, word 1 suggests that hat the classifier has learned
that nodes connected to a high number of primary outputs
but with local neighbors (predecessors) with low observability
could be hard-to-test—f3 and f2 have positive weights that in-
dicate that increasing feature value (decreasing observability)
have more influence on testability than the observability of the
node’s itself (f1). Word 2 adds another condition that a node
that is itself hard to control is likely to be hard-to-test, but
only if its neighbors also have low observability—note how
f4 has a large negative weight relative to the other weights.
If controllability of the node is poor, f4 is high, which means
that the local and neighborhood observability also needs to be
poor (f1 and f2 high) for a node to be considered hard-to-test.
Word 3 has the same feature subset as word 2, but instead adds
further insight that nodes that have poor observability (high
f1) are only hard-to-test if they also have poor controllability
or are in a neighborhood with poor observability, with the
neighborhood’s observability being more important (given the
larger weight for f2). All of these conditions need to be
satisfied for this specific sentence to be “triggered” (resulting
in a hard-to-test classification), while other conditions are
present in other learned sentences, each of which can be
similarly analyzed.

E. Discussion and Outlook

The SiFS example illustrates the benefits of intrinsically
explainable ML models; in this case, for both local explana-
tions (one can interpret the sentences triggered by a sample) as
well as a way to inspect the model as a whole (by examining
the family of sentences). One can gain further insights by
considering how often a sentence is most strongly activated
by samples in a given class, which also aids in characterizing
the test data. We turn our attention now to some challenges
and open areas in ML for IC test for future exploration.

Where is explainability appropriate? The answer to this
question is highly dependent on the application objectives;

word 1: (-0.011*f1+0.53*f2+1*f3 > -0.38)
word 2: AND (0.98*f1+0.32*f2+1*f3-2.5*f4 >
-0.091)
word 3: AND (-0.11*f1+1*f2+0.039*f3+0.33*f4
> -0.052)

Fig. 4: An example sentence (explanation) for classifying a
node as hard-to-test (stuck-at-0) from [14]. f1 is observability,
f2 is the average observability among predecessors, f3 is the
percentage of output pins where there is more than one path
from the node-of-interest to the pin, f4 is controllability-1 of
the node itself.

thus an open area to explore is the identification of which IC
test applications can benefit from explainability. As observed
by Weld and Bansal [8], low-stakes decision-making might
not require the additional effort; however, as engineers seek
to apply more complex end-to-end ML models, the need for
explainability can grow. As Chowdhury et al. observe [7],
robustness is often a shortcoming in such ML models. Hence,
post hoc explainability techniques, like LIME [13] can provide
insights into local decisions, especially when models fail.
Analyses with such tools can give greater confidence into
ML-based approaches by peering into fundamental concepts
learned by the model.

How “much” explainability is needed? As we saw with
the SiFS example, designers first intuit features that might
be useful for the ML model to achieve its objective; they
will choose feature(s) that they think (or know) has some
correlation to the desired predictions. This, in turn, can lead to
more immediately meaningful explanations from intrinsically
explainable models, as well as allows experts to check that
their intuitions are satisfied (or probe deeper if they are con-
tradicted). This can build trust in the model. However, intrin-
sically explainable ML approaches are often associated with
poorer accuracy compared to deep learning approaches [8]—
sometimes application necessitate more complex approaches
with high dimensional data. In fact, it could be the case that
ML could learn “meaningful” concepts that go beyond human
comprehension. Thus, exploring the continuum of comprehen-
sibility/fidelity of an explanation, alongside performance, is
another open area to explore. For example, it can be possible
to combine feature representations learned by deep learning
models with rule-based ML approaches (like SiFS), producing
hybrid models which still produce explanations.

III. PHYSICS-INFORMED CONVOLUTIONAL NEURAL
NETWORK FOR ELECTROSTATICS ANALYSIS

In this section, we discuss a novel data-driven mesh-less 2D
numerical technique for electrostatic analysis using physics-
informed convolution neural networks. Physics-informed neu-
ral networks (PINN) basically translate the solving of differen-
tial equation into an DNN-powered optimization problem with
loss functions to incorporate the physics-laws. The solution
is obtained when all physics-laws and boundary conditions
are constrained or complied after the unsupervised learning.
In this work, we exploit the convolution neural networks

(CNN) based PINN as CNN is more amicable for 2D VLSI
layout image inputs. We show that the numerical differential
operations can be obtained by means of convolution filtering.
Numerical results demonstrate that our model achieves an error
rate of 9.3% in electric potential estimation without labeled
data and yields 5.7% error with the assistance of limited
number of coarse labeling data.

A. Background
Electrostatics is an important subject of study as it is pivotal

in many VLSI modeling applications such as DC current or
power analysis of power and ground networks at the circuit
and board levels, capacitance parasitic extraction etc. The goal
is to compute voltage potential and electric fields with some
voltage and current boundary conditions for dielectrics and
metal interconnects or planes.

Traditionally, this differential equation problem is mainly
solved by numerical methods such as finite difference or finite
elements in which a mesh will be generated to discretize
the governing equation, which can be very computationally
expensive, especially for large problems. Recently, physics-
informed neural networks (PINN) or physics-constrained neu-
ral networks (PCNN) have been proposed to learn and encode
physics laws expressed by nonlinear partial differential equa-
tions (PDE) for complex physical, biological or engineering
systems [16], [17]. However, only simple problem has been
demonstrated so far [17]–[21]. Recently PINN/PCNN concept
has been applied to solve electrostatic problem for VLSI
layout [22]. However, this work still use traditional multi-layer
perceptron (MLP) for underlying DNN network, which may
not be friendly to the 2D VLSI layout inputs.

In this work, we exploit the convolution neural networks
(CNN) based PINN as CNN is more amicable for 2D VLSI
layout image inputs. We show that the numerical differential
operations can be obtained by means of convolution filtering.
The preliminary results demonstrate that the proposed physics-
informed CNN network can get accurate results around the
boundary of the problems. The new solver achieves an error
rate of 9.3% in electric potential estimation without labeled
data. To further improve the accuracy, some easily accessible
coarse labels are introduced at some collocation points derived
from the FEM analysis. The resulting solver yields 5.7% error
with the assistance of those coarse labeling data.

1) Electrostatics problem: As mentioned above, many
VLSI related problems can be concluded to electrostatics
problem, where electric current does not exist and there are
only static electric fields due to the voltages applied or charges.
They are governed by the first equation of the Maxwell’s
equations, also known as Gauss’s law:

∇2u(x) =
−ρ
ε
, x ∈ Φ (1)

with following Dirichlet and Neumann boundary conditions:

u = f(x), x ∈ ΓD,

∇u · ~n = g(x), x ∈ ΓN ,
(2)

where Φ is the solution domain, ΓD is the part of the boundary
where Dirichlet (voltage) boundary conditions are given, ΓN is

the part of the boundary where Neumann boundary conditions
are given, u(x) is unknown potential to be found, ρ is the
charge density, ε is permittivity, f(x), and g(x) are given
voltage sources and current sources at the boundaries.

In cases where static charges are absent, which this work
focuses on, 1 becomes Laplace equation:

∇2u = 0 (3)

After solving eq. 3, distribution of electric field is usually
obtained by calculating the gradient as per its definition:

~E = −∇u (4)

Solving for ~E under given voltage boundary conditions f(u)
is often of more interest for many practical problems. For
example, for capacitance extraction, first the voltage is set to
1V (VDD) for one interconnect wire (indexed i), 0V (GND)
for other wires. Then the induced static charge in any other
wire j can be computed using Gauss’s flux theorem.

2) Finite element method: In convention, electrostatics
problems are solved using discretization methods such as FEM
or FDM. Results given by commercial tools based on FEM
such as COMSOL are usually deemed golden.

In conclusive words, FEM first discretizes the domain to be
solved by a mesh. The mesh and the shape function chosen
define a function space. Elements of the function space are
defined by expansion coefficients of the shape functions. A
numeric solution to the original PDEs can be then found by
searching in this function space for the one that best fits the
original equations. This is done by setting up and solving
a linear system from the original PDEs, with the expansion
coefficients to be solved. Typically, the final linear system is
composed of tens of thousands of unknowns, known as DOF
(degree of freedom). Solving a problem of this scale is not
very expensive, yet is still noticeable in a longer routine.

B. The proposed physics-informed convolutional neural net-
work solver for electrostatics

1) Label-free PINN model for electrostatics analysis: PINN
essentially leverage the well-known capability of DNN as
universal function approximation [16], [17]. PINN learns to
model the behaviors of any dynamic time-dependent, nonlinear
system, expressed by the given PDE with boundary and initial
conditions. For electrostatic problem as we see from 1, we are
computing the steady-state solution and a typical layout and
its electric potential is shown in Fig. 6.

In this work, similar to problems in computer vision, we
treat the input-output map as an image-to-image problem in
which the input is the 2D layout (Fig. 6a) and the output
is the electric potential map (Fig. 6b). As shown in Fig. 5,
a CNN-based encoder-decoder network is employed as the
backbone of our proposed model. It is composed of two parts,
the first half is the encoder consisting of 6 convolutional
(Conv) layers, and the second half is the decoder consisting of
6 deconvolutional (Deconv) layers ending with an extra Conv
layer. This extra Conv layer is added to smooth the electric
potential result and eliminate the checkerboard artifacts.

500x500x1

250x250x32
125x125x64

63x63x128
32x32x256

16x16x512

8x8x1024

Encoder

Decoder

Layout

Bottleneck

Layer
Electric Potential

1 0 -1

2 0 -2

1 0 -1

1 2 1

0 0 0

-1 -2 -1

500x500x1

250x250x32
125x125x64

63x63x128
32x32x256

16x16x512

Horizontal Kernel

Vertical Kernel

Conv x2

+

Conv x2

Loss:

Fig. 5: Architecture of the proposed physics-informed convo-
lutional neural network

VDD

0 300 500
0

300

500

VDD

VDD

GND

GND

GND

(a)

0.0

1.0

0.2

0.4

0.6

0.8

0 300 500
0

300

500

(b)

Fig. 6: (a) VLSI interconnects layout (b) Ground truth electric
potential

In contrast to traditional data-driven methods, we propose
to employ the governing Laplace equation instead of bulky
training dataset to train the model, which significantly reduces
the training cost and yields much better generalizability. To
get the required items in loss function (7), we apply two
convolutions with fixed kernels onto û, which is the electric
potential estimated by the encoder-decoder network. We use
two Sobel kernels here, one horizontal and one vertical, which
can efficiently obtain the spatial gradients. The resulting ûxx
and ûyy are then employed into the calculation of the PDE
loss part in the loss function.

The training process of PINN is essentially an optimization
process, it looks for a set of parameters (W,b) which
minimizes the physics-based loss defined by the original
differential equation.

Specifically for our electrostatics problems, the physics

based loss function can be defined by the original equations
(3) and (2)

Lphy(W,b) = ||∇2u||Φ︸ ︷︷ ︸
Gauss’s law

+ ||u− f(x)||ΓD︸ ︷︷ ︸
Boundary condition

(5)

where || · || is L2 norm over a specific domain. Then, training
of the network is defined as an optimization problem, looking
for the optimal weights and biases (W∗,b∗) that minimizes
the loss:

W∗,b∗ = argminW,bLphy(W,b) (6)

In practice, the L2 norm is computed using the collocation
method [23]. The domain Φ and the boundary Γ is discretized
into sets of collocation points Φd and Γd, with the number of
points |Φd| = Nf and |Γd| = Nb respectively. Then the loss
is computed through the mean square error (MSE) on these
points. For the part that corresponds to Gauss’s law in the PDE
form,

Lpde(W,b) =
1

Nf

∥∥∇2û
∥∥2

2
(7)

where û stands for the electric potential estimated by the
model,∇2û = ûxx+ûyy , ûxx and ûyy are two gradient images
along the horizontal and vertical directions estimated by Sobel
filter.

For the part that covers the boundary condition,

Lbou(W,b) =
1

Nb

Nb∑
i=0

[û (bi)− u (bi)]
2 (8)

where {bi}Nb
i=1 are the collocation points on the boundary,

u(bi) are the ground truth boundary voltages.
Combining the two parts of the loss function, the complete

loss function used in practice is defined as

Lpinn(W,b) = Lpde(W,b) + Lbou(W,b) (9)

By minimizing the loss function, the model output û will
converge to an accurate solution to the original problem.

2) Improved loss function with labels: Our study shows
that for many practical problems with complicated boundary
conditions, PINN loss function defined in (9) may still lead
to large errors especially for the region far away from the
boundary. In this case, introducing some data from numerical
solutions or measurement as labels can be instrumental for
the training of PINN networks. For example, one can get the
solution with FEM on a coarse mesh, and use it to aid training
the model. Compared with the much longer runtime required
to solve the PDE on a finer mesh or training the label-free
model, the cost of getting such coarse labels is negligible.

Denote the number of coarse labels as Nl, a new part of
label-defined loss is then

Lbou(W,b) =
1

Nl

Nl∑
i=0

[û (li)− u (li)]
2 (10)

where {li}Nl
i=1 are the collocation points of the coarse labels,

u(li) are the ground truth voltages at these points.

Weight of PDE Increases

Wbou : Wpde = 1:102 Wbou : Wpde = 1:103 Wbou : Wpde = 1:104 Wbou : Wpde = 1:105 Wbou : Wpde = 1:106

0.0

1.0

0.2

0.4

0.6

0.8

0.0

1.0

0.2

0.4

0.6

0.8

Ground
Truth

PCNN

Ground
Truth

PCNN

Ground
Truth

PCNN

Ground
Truth

PCNN

Ground
Truth

PCNN

Ground
Truth

PCNN

Ground
Truth

PCNN

PICNN Result

Error Map

Centerline Profile

Fig. 7: Influence of weights on PINN result

In practice, we can see these coarse labels as scattered
boundary points so that the label data loss can be combined
into the boundary loss. Thus, the model is still trained using
the loss function shown in (9) but with colocation points of
coarse labels appended to the boundary points.

C. Numerical results and discussions

In this section, we present the experimental results of
our proposed model in performing electrostatics analysis,
including both electric potential and electric field estima-
tions for VLSI interconnects. The model is implemented
in Python based on PyTorch(1.6.0) and runs on a single
NVIDIA GeForce TITAN RTX GPU. We test our model on
a layout extracted from real design synthesized with a 32nm
educational technology. Fig. 6 shows the testing layout and its
ground truth electric potential.

1) Label-free PINN network: As the loss function in our
proposed model consists of two independent parts, i.e. PDE
loss and boundary loss, the relative ratio of the weights for
each part (Wpde and Wbou) has significant influence on final
results. To find the best configuration, we explored different
weight ratios as shown in Fig. 7.

When Wpde is relatively small, the model focuses more
on the boundaries while ignoring transition areas, especially
the points that are far from any adjacent boundary. Gradu-
ally increasing Wpde leads to more smooth transitions be-
tween VDD and GND, but may also lose some accuracy
on the boundaries. The optimized tradeoff is achieved when
Wbou:Wpde is set to 1:104, which yields smooth transitions
while maintaining acceptable accuracy on boundaries as well.

We compared the estimated electric potential given by our
model against the ground truth, the root-mean-square error
(RMSE) is 93mV, which is 9.3% in terms of normalized
RMSE (NRMSE) when considering the full scale between

VDD and GND (1V). Such result is achieved with 1000 epochs
of training in 37.6 seconds, which is slightly slower than the
23.14s taken by the COMSOL. However, our model is solving
the problem in euclidean space which requires no prior work of
meshing, while this is not the case in FEM method. Thus, our
model saves much computational cost against FEM method
with comparable results. Moreover, the machine learning-
based model has greater potential in solving multiple tiles of
layouts in parallel which may lead to even larger advantages in
terms of computational cost when dealing with large designs.

Although the estimated electric potential loses some accu-
racy, it is still acceptable especially when considering that such
result is achieved when the training is purely unsupervised
with no labeled data required.

2) Simulation-label assisted PINN: The result achieved by
our model with pure unsupervised learning in Section III-C1 is
acceptable but still has a large room for improvement. In this
section, we propose to take one step back and add some easily
accessible labeled data into training to improve the overall
accuracy.

As stated in Section III-B1, the reason that we prefer an
unsupervised model over a supervised one is mainly because
of the great cost it takes to generate a usable training dataset.
This cost is particularly large in this application as it usually
takes several minutes to mesh and solve a single layout.
However, if we just coarsely mesh the layout with less
than a hundred grids, the whole process of solving such a
low-precision layout can be done with much lower cost in
COMSOL. This observation leads to our proposal to employ
these easily accessible coarse data to assist the training process
of PINN with the hope that the result accuracy can be further
improved.

The experiment is conducted using the same layout as
Section III-C1 and the added coarse label data points are

shown in Fig. We employed 64 coarse data points which can
be simply seen as extra scattered boundary points. Thus, in
the training process, these coarse labels are combined into
the boundary conditions and enforced by the boundary loss
part in the loss function. The label-assisted PINN is trained
using the same hyperparameters and runs for 1000 epochs.
The estimated electric potential is shown in Fig. 8b.

0 300 500
0

300

500

0.0

1.0

0.2

0.4

0.6

0.8

(a)

0.0

1.0

0.2

0.4

0.6

0.8

(b)

0.0

1.0

0.2

0.4

0.6

0.8

(c)

Ground

Truth

PCNN

(d)

Fig. 8: (a) Coarse label data (b) Label-assisted PINN estimated
result (c) Error map (d) Centerline voltage profile

The result accuracy of the label-assisted PINN is signifi-
cantly improved compared to the unsupervised version. With
the assistance of limited number of coarse labels, the RMSE
is reduced from 93mV to 57mv, which is 5.7% NRMSE.

IV. RELIABILITY CHALLENGES IN ADVANCED
TECHNOLOGIES

Technology scaling improves the efficiency of computing
systems. With smaller transistors, computing systems can use
more complex logic (more transistors) for more performance at
a lower power consumption. However, since geometry scaling
of transistors does not follow Dennard scaling anymore, ge-
ometry is scaled more than the corresponding supply voltage.
Hence, the electric fields rise with each new generation.

This inevitably lead to problems within the transistor, such
as insufficient control over leakage. In turn, this leads to
innovations in the transistors. With the introduction of 32nm
semiconductor technology, high-k dielectrics were introduced
and with the introduction of 14nm technology the 3D structure
of FinFET transistors was necessary to keep leakage under
control.

These ever-increasing electric fields stimulate existing
degradation phenomena like aging effects such as Bias Tem-
perature Instability (BTI) and Hot-Carrier Degradation (HCD).
Additionally, these transistor innovations (such as FinFET
and high-k dielectrics) result in novel reliability challenges
(such as the Self-Heating Effect (SHE)) on top of the exac-
erbated existing ones. In this work, we provide an overview
over well-known and newly occurring reliability degradation
phenomena. In particular, we discuss how these phenomena
can be modeled to study the impact on the chip level, while
the defects occur on the transistor level. For this purpose,
we discuss various high-performance modeling approaches,
abstractions and machine learning techniques.

Furthermore, beyond regular transistor innovations like
FinFET, this section discusses emerging technologies such
as Negative Capacitance Field-Effect Transistors (NCFET).
NCFETs feature a ferroelectric layer in the gate dielectric,
which provides voltage amplification and thus better transistor
performance at lower supply voltages.

Lattice Temperature (K)

3.727 e+02

3.485 e+02

3.364 e+02

3.242 e+02

3.121e+02

3.000 e+02

3.606 e+02

Drain

Drain

Source

Source

A1

A

(a)

Temperature

109 °C

97 °C

85 °C

73 °C

51 °C

39 °C

27 °CSubstrate
remains

cold

Bad
thermal

conduction

Channel is
hot

Fig. 9: SHE heating the channel of a 14nm FinFET transistor,
reducing channel carrier mobility and thus the ON-current of
the transistor. Additionally, aging phenomena are stimulated
by these elevated channel temperatures.

A. Self-Heating Effect
The Self-Heating Effect (SHE) is the entrapment of heat

within the channel of a transistor. Since the channel of a
transistor is just a semi-conductor, significant Joule heating
occurs when high currents are flowing through the transistor.
In planar MOSFETs, this heat from the channel was dissipated
via the substrate to the rest of the chip (where cooling then
removes the heat). This heat flux is severely hampered in
FinFET transistors, as now the channel is encapsulated on
three sides and the connection to the substrate is through a
long and narrow fin. Hence, the thermal resistance from the
channel to the substrate is much higher in FinFET than planar
MOSFET [24].

During the operation of the transistor, the current flowing
through the transistor heats the transistor’s channel. The high
thermal resistance from the channel to the substrate ensures
that this heat remains trapped and the channel becomes hot
(as shown in Fig. 9). This elevated channel temperature
(∆TC) has two consequences. First, the ON-current of the
transistor reduces, which decreases the performance of the
computing system (as clock frequencies have to be lowered)
[24]. Secondly, aging phenomena like BTI and HCD are stim-
ulated, since higher temperatures accelerates these physical
degradation processes [25].

Table III shows the biggest peaks in the channel temperature
distribution during the execution of matrix multiplication in a
processor. Since transistors cool and heat up in nano-seconds
(minuscule thermal capacitances with large heat fluxes), the
temperature varies by over 140◦C across the processor [26].

With the introduction of the ferroelectric layer in NCFET
transistors, self-heating becomes even worse as the thermal
resistance of the gate dielectric drops even further. Our work in
[27] shows how SHE is even worse in these emerging devides
(see Table. II comparing NC-FinFET to regular FinFETs).

B. Transistor Aging
Bias Temperature Instability (BTI) and Hot-Carrier Degra-

dation (HCD) are the key aging phenomena in p- and n-type

Vds ∆TC FinFET [◦C] ∆TC NC-FinFET [◦C]
0.3V 24 28
0.4V 37 44
0.5V 46 55
0.6V 58 70
0.7V 67 79
0.8V 75 88

TABLE II: Additional self heating in NC-FinFET compared
to regular FinFET transistors [27].

∆TC % of n-FinFET % of p-FinFET
0 ◦C 2.5 % 2.4 %
62 ◦C 0.0 % 1.2 %
73 ◦C 0.6 % 0.0 %

121 ◦C 2.7 % 0.2 %
140 ◦C 0.0 % 2.1 %

TABLE III: Overview of the peaks of SHE-induced channel
temperature increase across a processor executing a matrix
multiplication benchmark. Based on data from [26]

transistor, respectively. The ever-increasing electric fields gen-
erate and electrically activate defects within the gate dielectric.
These electrically charged defects manifest themselves as a
threshold voltage shift in the transistors and lower their ON-
current. Hence, these aging phenomena lower the performance
of computing systems.

With tiny geometries in the nano-meter range, these defects
became countable (tens of defects compared to thousands
in 32nm and above) and hence each transistor reacts differ-
ently depending its individual defects. This manifests itself
as variability through defects [28], shown in Fig. 10. As
now the response of each transistor is not deterministic and
varies widely, defect-level aging models for BTI and HCD are
necessary. Our work in [25] combined BTI, HCD and other
degradation phenomena into a single defect-level degradation
model and [28] extended that model to include this form of
transistor-to-transistor defect-induced variability.

C. Accelerated Reliability Modeling on GPUs

Reliability modeling and simulations are frequently limited
in scope and detail (accuracy) by their execution time. It
is impossible to simulate each defect in billions of transis-
tors operating at billions operations per second for years of
its lifetime. Especially since the reliability models for the
phenomena become more complex to model ever-evolving
reliability physics on the defect-level for each new technology
generation. General purpose computing on graphics cards
(GPU) has emerged as a potential solution to this issue.
GPUs offer thousands of simple processor cores bound in
structure optimized for massively parallel execution of simple
tasks. Hence, if the algorithms can be mapped to the simpler
execution cores of a GPU (compared to full CPU cores), then
parallelism beyond 4096 execution cores is possible in a single
graphic card. Our work in [29] showed an implementation
of our defect-level aging model presented in [25]. While
the original MATLAB implementation of the model took
minutes per transistor to estimate its threshold voltage shift (its
degradation), our C implementation reduced this to seconds.

1

Modeling and Mitigating Defect Variability from
the Physical Level to the Circuit Level

Victor M. van Santen, Member, IEEE, Hussam Amrouch, Member, IEEE, and Jörg Henkel, Fellow, IEEE

0

5

10

15

20

25

30

35

10−2 100 102 104 106 108

∆
V
th

[m
V

]

Time[s]

Transistor 1
Transistor 2
Transistor 3
Transistor 4
Transistor 5

Fig. 1. Transistors exhibit different degradations despite identical manufac-
turing and operation under the same stimuli. This highlights how transistors,
which only differ in their defects can degrade differently and thus introduce a
variability in their electrical parameters. This effect is called defect variability.

Abstract—Some abstract

Index Terms—Variability, Reliability, Semiconductor device
reliability, Reliability engineering, Variation, Aging, Noise, BTI,
RTN, Guardband, Safety Margin, Defects

I. INTRODUCTION

Variability is a big challenge for CMOS technology in
the nano era. This challenge must be tackled during the
circuit design. Two types of variability are known. First, Time-
Dependent Variability (TDV) consisting of material imperfec-
tions - called defects - that are generated during manufacturing
within the gate dielectric of each transistor [1]. In contrast
to the second type, traditional Time-Zero Variability (TZV)
like geometric, dopant fluctuations, etc., TDV consists of
electrically neutral defects, that do not manifest themselves as
any degradation immediately after manufacturing. Therefore it
only manifests itself after a stimuli (e.g. voltage) is applied.
However, these defects cannot be ignored, as they can capture
carriers during circuit operation, weaken the formation of a
channel in a MOSFET and thus induce a threshold voltage
shift ∆Vth in the transistor (see Fig. 1 and [1] [2]). In fact,
∆Vth degradation due to TDV is higher than TZV ∆Vth
degradation consisting of work function, geometric, dopant
fluctuations in current 10nm FinFET [3].

To protect the circuit against all types of variability, circuit
designers typically employ a guardband. A guardband is pur-

V. van Santen, H. Amrouch and J. Henkel are with the Chair of Embedded
Systems, Karlsruhe Institute of Technology, Haid-und-Neu Strasse 7, 76133
Karlsruhe, Germany. {victor.santen, amrouch, henkel}@kit.edu

posefully over-designing the circuit, in which the deleterious
effects of degradations can be tolerated. In this work, our
guardband is a timing slack on top of circuit delay, which
prevents timing violations by prolonging clock periods, Longer
clock periods tolerate prolonged/degraded circuit propaga-
tion delays, caused by threshold voltage shifts ∆Vth in the
transistors. Until circuit delay degrades beyond the safety
margin provided by the guardband (i.e. tdelay(current) <
tdelay(nominal) + tdelay(guardband)) reliable circuit opera-
tion is ensured by the guardband. The challenge is to select
the guardband correctly. If the guardband is too low, the clock
period is shorter than the propagation delay of the circuit and
thus timing violations occur. If the guardband is too high, then
the clock frequency is too low and circuit performance suffers
unnecessarily. Therefore, peak degradations due to variability
must be determined accurately, which is the goal of this work.

In standard EDA tool flows, the guardband is determined
based on the process corners. For Process, Voltage and Tem-
perature (PVT) variations a best-case corner (fast-fast FF), a
typical corner (typical-typical TT) and a worst-case corner
(slow-slow SS) are provided by the semiconductor vendor.
Each corner provides timing and power information for best,
typical and worst-case operating conditions and worst manu-
facturing tolerances. Therefore, the SS corner features delay
and power for standard cells at a) worst process (worst TZV
sample & worst TDV sample) b) worst (highest) temperature
c) worst (lowest) voltage. Designing the chip at TT and
performing timing checks at SS is the typical approach. This is
- by design - very pessimistic, which ensures reliable operation
but severely harms performance.

To reduce pessimism, the circuit designer can de-rate the
corners. De-rating is interpolating standard cell delay between
corners, e.g. between SS and TT. By specifying known oper-
ating condition (e.g. 80C instead of 125C worst case temper-
ature) the EDA tools derate (e.g. tdelay = 0.9 · Tdelay(SS) +
0.1 · Tdelay(TT)) or re-characterize the cells to obtain timing
at these less pessimistic conditions. De-rating is available for
temperature and voltage, yet for variability there is no such
option. The impact of variability cannot be reduced. This fits
time-zero variability, as the circuit designer has no control
over the variability of semiconductor manufacturing. However,
time-dependent variability is influenced by the circuit designer.
As the name suggests, time-dependent variability depends on
the duration of operation of the circuit. Even if the circuit is
designed for 2 years operation (consumer warranty), variabil-
ity values from more than in 10 years operation (industrial
warranty) are taken, introducing unnecessary pessimism. Ad-
ditionally, TDV degrades more under high temperature than at

Fig. 10: Variability in the BTI-induced threshold voltage
shift, despite the exact same stimuli (same constant voltage
and temperature) for each transistor. The differences from
transistor to transistor stem from the different defects in their
gate dielectrics. This complicates BTI modeling for nano-scale
transistors as now to maintain sufficient accuracy, defect-level
aging models [25] [28] are mandatory.

0

10

20

30

40

50

0 5 10 15 20

a) η histogram with fit

0.0

5.0

10.0

15.0

20.0

20 40 60 80

b) Mean and Std. Dev. of D(τc, τe)

O
cc

ur
re

nc
e

[#
]

η [mV]

η

L
og

(V
al

ue
s)

Device sample size

µ1

µ2

σ1

σ2

Fig. 6. a) Histogram of η from 211 devices with 417 defect at Vgs = 2.5V
with fit of exponential function. b) Mean and standard deviation of D(τc, τe)
as a function of device sample size. For larger sample sizes ∆µ1,∆µ2
and ∆σ1,∆σ2 are reducing, resulting in stable, i.e., representative defect
distributions.

1

10

100

1000

10000

1,000 10,000 100,000

10.6x

10.5x

9.8x

Single transistor
in original model
M

od
el

in
g

Ti
m

e
[s

]

Devices

Sequential C
CUDA on GPU

Fig. 7. a) Performance of our CUDA implementation of our PDO model
for Vgs waveforms with 1000 points and different number of devices. CUDA
outperforms sequential C-code by 10x in all cases. Note, that sequential C
is further optimized compared to our last reported performance metrics [10],
which are represented by a dashed line for a single MOSFET simulation.
Modeling time of 119s for 100,000 devices enable circuit level BTI variability
modeling. b) Circuit simulations of 32bit and 64bit multiplier synthesized in
a commercial EDA tool flow resulting in 11288 respectively 42534 devices.
These results highlight how our approach can handle BTI variability on the
circuit level. The small delay increase is due to BTI modeling for tstress =
100s with 2.5V in a mature 65nm technology.

only update necessary variables in each time-step, cache
intermediate results), but only our massively parallel PDO
implementation enables large scale simulations. To verify this
statement, we used our in-house parallel SPICE simulator to
simulate 32 and 64-bit multipliers with 11288 and 42534
devices, respectively (shown in Fig. 7b). Each device had a
unique set of defects, resulting in a unique occupancy state
and thus unique ∆Vth. For details about the integration of
BTI models in EDA tool flows, see our previous work in [18]
and [16].

ACKNOWLEDGMENT

We would like to thank Pablo Saraza Canflanca and An-
tonio Toro Frias from IMSE-CNM for their support in the
measurement setup and Sven Brinkmann from KIT for his
work on the parallel PDO implementation. KIT is supported in
part by the German Research Foundation (DFG) as part of the
priority program “Dependable Embedded Systems” (SPP1500)
[19]. UAB and IMSE are supported in part by the TEC2013-
45638-C3-R and TEC2016-75151-C3-R Projects (funded by

the Spanish MINECO and ERDF) and by the P12-TIC-1481
Project (funded by Junta de Andalucia)

VII. CONCLUSION

Introducing parallelism in measurement, characterization
and modeling made BTI variability evaluation feasible for
large circuits. We calibrated a parallel defect-centric BTI
model with a wTLP-based parameter extraction, which can run
in parallel to the parallel characterization of on-chip devices.
The wTLP-based parameter extraction is a lightweight noise
filtering approach to obtain RTN and BTI defect parameters in
a fast yet accurate manner. Our parallel BTI models exhibits a
higher performance with 100,000 devices in 119s with 1.2ms
effort per device, while maintaining full accuracy.

REFERENCES

[1] D. Angot, V. Huard, L. Rahhal, A. Cros, X. Federspiel, A. Bajolet et al.,
“Bti variability fundamental understandings and impact on digital logic
by the use of extensive dataset,” in IEDM, 2013.

[2] P. Weckx, B. Kaczer, C. Chen, J. Franco, E. Bury, K. Chanda et al.,
“Characterization of time-dependent variability using 32k transistor
arrays in an advanced hkmg technology,” in IRPS, 2015.

[3] T. Grasser, H. Reisinger, P. J. Wagner, F. Schanovsky, W. Goes, and
B. Kaczer, “The time dependent defect spectroscopy (TDDS) for the
characterization of the bias temperature instability,” in IRPS, 2010.

[4] J. Martin-Martinez, B. Kaczer, M. Toledano-Luque, R. Rodriguez,
M. Nafria, X. Aymerich et al., “Probabilistic defect occupancy model
for NBTI,” in IRPS, 2011.

[5] J. Diaz-Fortuny, J. Martin-Martinez, R. Rodriguez, M. Nafria, R. Castro-
Lopez, E. Roca et al., “A transistor array chip for the statistical
characterization of process variability, RTN and BTICHC aging,” in
SMACD, 2017.

[6] J. Diaz-Fortuny, J. Martin-Martinez, R. Rodriguez, M. Nafria, R. Castro-
Lopez, E. Roca et al., “TARS: A toolbox for statistical reliability
modeling of CMOS devices,” in SMACD, 2017.

[7] J. Martin-Martinez, J. Diaz, R. Rodriguez, M. Nafria, and X. Aymerich,
“New Weighted Time Lag Method for the Analysis of Random Tele-
graph Signals,” EDL, 2014.

[8] B. Tudor, J. Wang, C. Sun, Z. Chen, Z. Liao, R. Tan et al., “MOSRA:
An efficient and versatile MOS aging modeling and reliability analysis
solution for 45nm and below,” in ICSICT, 2010.

[9] N. Goel, T. Naphade, and S. Mahapatra, “Combined trap generation and
transient trap occupancy model for time evolution of NBTI during DC
multi-cycle and AC stress,” in IRPS, 2015.

[10] V. M. van Santen, H. Amrouch, J. Martin-Martinez, M. Nafria, and
J. Henkel, “Designing Guardbands for Instantaneous Aging Effects,” in
DAC, 2016.

[11] A. Whitcombe, S. Taylor, M. Denham, V. Milovanovic, and B. Nikolic,
“On-chip i–v variability and random telegraph noise characterization in
28 nm cmos,” in ESSDERC, 2016.

[12] T. Grasser, K. Rott, H. Reisinger, M. Waltl, J. Franco, and B. Kaczer,
“A unified perspective of RTN and BTI,” in IRPS, 2014.

[13] B. Kaczer, S. Mahato, V. V. de Almeida Camargo, M. Toledano-Luque,
P. J. Roussel, T. Grasser et al., “Atomistic approach to variability of
bias-temperature instability in circuit simulations,” in IRPS, 2011.

[14] J. Bhaskarr Velamala, K. Sutaria, H. Shimizu, H. Awano, T. Sato,
G. Wirth et al., “Compact Modeling of Statistical BTI Under Trap-
ping/Detrapping,” T-ED, 2013.

[15] A. Ortiz-Conde, F. G. Sanchez, J. J. Liou, A. Cerdeira, M. Estrada,
and Y. Yue, “A review of recent mosfet threshold voltage extraction
methods,” Microelectronics Reliability, 2002.

[16] V. M. van Santen, J. Martin-Martinez, H. Amrouch, M. Nafria, and
J. Henkel, “Reliability in Super- and Near-Threshold Computing: A
Unified Model of RTN, BTI and PV,” in TCAS-I, 2017.

[17] H. Amrouch, J. Martin-Martinez, V. M. van Santen, M. Moras, R. Ro-
driguez, M. Nafria et al., “Connecting the physical and application level
towards grasping aging effects,” in IRPS, 2015.

[18] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Reliability-
Aware Design to Suppress Aging,” in DAC, 2016.

[19] J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte,
S. Chakraborty et al., “Design and architectures for dependable em-
bedded systems,” in CODES, 2011.

Fig. 11: GPU-based implementation [29] of defect-level aging
model from [25] [28]. The GPU implementation can model
100k transistors in under 120 seconds and thus enables delay
estimates of large circuits like multipliers.

However, this is not fast enough for larger circuits, whereas
our GPU-based implementation can estimate 100k transistors
in under 120 seconds. This allows the inclusion of such
implementation in automated circuit reliability tools such as
CARAT [30], which estimates BTI and HCD on the defect-
level for large circuits such as full SRAM arrays (including
their sense amplifiers and write drivers) with thousands of
transistors.

As circuit reliability estimation tools like CARAT [30] built
on top of Analogue Mixed-Signal (AMS) circuit simulators
(e.g., SPICE), these tools limit the scope of the reliability
estimation. While our work in [29] made the models fast
enough for large-scale circuits featuring millions of transistors,
the circuit simulators (even with multi-threading enabled) can
only handle large circuits on large and expensive compute
clusters. Our work in [31] [32] shows how AMS circuit
simulator SPICE can be ported to the GPU as well. As Fig.

10

TABLE 1
Circuit Overview

Circuit Name Circuit Size Circuit Performance
General Non-Zero Matrix Elements Circuit Setup Time [s]

Our Circuits Transistors Requests Matrix Cols Total Max in Column NGSPICE [17] Xyce [19] SQL Radix
MAC 64-bit 87,096 5,574,920 392,320 3,340,543 185,364 1,484.74 9.67 22.72 3.24
AES 87,235 5,584,084 393,616 3,293,525 189,412 1,569.00 10.79 23.83 3.32
DCT 353,184 22,603,924 1,605,066 13,485,834 793,179 47,211.88 38.53 95.60 13.12
Multiplier 64-bit3 42,534 2,722,696 191,663 1,630,990 90,006 244.44 4.71 11.03 1.64
Multiplier 128-bit 236,639 15,145,928 1,064,524 9,021,114 523,191 16,876.14 26.79 62.44 8.81
Multiplier 256-bit 1,051,970 58,911,350 4,734,895 39,954,126 2,240,289 394,093.62 123.80 3,634.23 89.63
EPFL Benchmarks [7] Transistors Requests Matrix Cols Total Max in Column NGSPICE [17] Xyce [19] SQL Radix
Divisor 64-bit 371,631 20,811,597 1,670,657 12,421,637 1,203,341 132,032.71 43.00 183.10 21.10
Multiplier 64-bit3 141,616 7,930,757 636,977 4,794,077 269,461 1,828.47 16.31 60.91 7.37
Sqrt 64-bit 255,361 15,458,954 1,082,543 9,195,146 554,498 20,173.21 25.15 81.37 10.22
Square 64-bit 85,106 4,766,125 382,603 2,866,549 162,937 1,003.89 9.78 48.19 5.37

TABLE 2
Relative Execution Time of SPICE Phases in Spectre

EPFL Circuits [7] Divisor Multiplier Sqrt Square
Circuit Setup 24% 19% 20% 17%

Operating Point 18% 17% 21% 20%
Matrix Lu Factorization 33% 35% 38% 38%

Matrix Solve 18% 16% 19% 16%
Others 7% 13% 2% 9%

1

10

100

1000

10000

100000

1× 106

M
AC-64

-b
it

AES
DCT

M
ulti

plie
r-6

4-b
it

M
ulti

plie
r-1

28
-b

it

M
ulti

plie
r-2

56
-b

it

Diviso
r-6

4-b
it

M
ulti

plie
r-6

4-b
it

Sq
rt-

64
-b

it

Sq
uar

e-6
4-b

it

4396x
1917x

7.2x

Se
tu

p
Si

m
ul

at
io

n
Ti

m
e

[s
] NGspice [baseline]

GPU-SPICE [our]

Fig. 12. Evaluation of circuit setup time for our synthesized circuits.
Radix is 7x to 40x faster than SQL, which in turn is significantly faster
than our baseline NGSPICE. For the 128-bit multiplier, circuit setup
dropped from 5.5 hours to 62s for our SQL implementation and 8.8s
for our Radix implementation. For larger circuits like 256 multiplier and
divisor, the speedup is even higher with 4396x compared to NGspice
and 40x to our SQL.

HSPICE results with minor differences resulting from the
differences in the numerical settings/algorithms (e.g. the
matrix solver or gmin values).
Circuit Properties: Table 1 summarizes our evaluated cir-
cuits. The circuits range from 42 thousand (k) to >1 mil-
lion (M) transistors with approximately 70 times the num-
ber of requests. This highlights the importance of high-
performance circuit setup, as the circuit setup scales with the
number of requests and not number of transistors. Matrix
Cols describes the number of columns of the circuit matrix,
which represents dimension of the matrix (i.e. n for the nxn
matrices). As the circuit matrices are sparse, we report the
number of non-zero elements and the maximum number of
non-zero elements in a single column (typically the column
representing either GND or VDD). These circuit properties
affect runtime. For example, the 15M requests of the 128-
bit multiplier result in 9M non-zero elements, hence 6M
requests were removed as duplicates. This highlights how
even simple operations like deduplication demands parallel

10−5

10−4

10−3

10−2

10−1

100

c4
32

c4
99

c8
80
c1

35
5
c1

90
8
c2

67
0
c3

54
0
c5

31
5
c6

28
8
c7

55
2

M
ulti

plie
r-6

4-b
it

Sq
uar

e-6
4-b

it

M
AC-64

-b
it

AES

M
ulti

plie
r-6

4-b
it

M
ulti

plie
r-1

28
-b

it

Sq
rt-

64
-b

it
DCT

Diviso
r-6

4-b
it

M
ulti

plie
r-2

56
-b

it

N
od

al
A

na
ly

si
s

Ti
m

e
pe

r
Tr

an
si

st
or

[s
]

NGspice [baseline]
GPU-SPICE (SQL) [our]
GPU-SPICE (Radix) [our]

Fig. 13. Normalizing circuit setup times shows how the algorithms scale.
If the algorithm scales well, than the amount per transistor should
stay constant (approx. linear O(n)) instead of growing linearly (O(n2)).
NGSPICE has less initialization overhead, but scales badly. Our Radix
circuit setup implementation scales excellent with near constant circuit
setup time per transistor.

execution, as millions of elements are processed.
Original NGSPICE Circuit Setup: For the original circuit
setup we evaluate all circuits in Fig. 11. Note the logarithmic
scale on the y-axis. For the smallest ISCAS benchmarks
setup is below a single second and even for the largest
benchmarks it does not exceed 100s (1.5 minutes). This
highlights how for such small circuits, previously the circuit
setup phase in SPICE could not be identified as a perfor-
mance bottleneck. The circuit setup phase is negligible for
circuits that small. However, in EPFL benchmarks and our
circuits we range from minutes (e.g., 26 minutes for AES)
to hours (e.g., 13 hours for DCT) to days (e.g., 4.5 days for
256 multiplier). This illustrates, how for larger circuits, the
circuit setup can consume considerable amount of time and
should be accelerated.
Our Circuit Setup: Our two circuit setup implementation
(Radix and SQL) are evaluated with all circuits. The ISCAS
benchmarks are not shown as the Radix circuit setup is
faster than 1s. For example, the largest ISCAS circuit c7552
with 14942 transistors executes circuit setup for 9.8s in
NGSPICE and drops to 3.3s in SQL and 0.7s in Radix. The
large circuit results are shown in Fig. 12. Our implementa-
tions reduce the time necessary for the circuit setup for the
entire range of large circuits. With encryption (AES), image
processing (DCT) and arithmetic (MAC) circuits we covered
a wide range of combinatorial circuits in which Radix vastly
outperforms NGSPICE and SQL. To observe the scaling, we

Fig. 12: Reduction in execution time of a phase in the AMS
circuit simulator GPU-SPICE [31] [32] comparing the GPU
and the multi-core CPU implementations.

12 shows, employing the GPU instead of the CPU allows for
much faster execution times. These faster execution times then
enable circuit simulations with millions of transistors [32].
If this GPU-SPICE is then used as the backend of CARAT
[30], then the impact of BTI and HCD can be estimated fully
automatically in large circuits.

D. Machine Learning-based Reliability Modeling

Machine learning (ML) offers suitable solutions to the
challenges of reliability modeling. As mentioned in the pre-
vious section, execution times are a big challenge for re-
liability estimations due to their complexity. Additionally,
most estimations are performed on sensitive information. The
transistor layout, circuit layout (standard cells as well as other
overall circuit) and reliability data (aging rates, temperature
dependencies, voltage acceleration factors, etc.) are sensitive
information for the foundry and design bureau. Since machine
learning is intrinsically a black-box approach, it is perfectly
suited to abstract and obfuscate the sensitive information,
while providing the same functionality (the reliability esti-
mation) to the customer. Additionally, inference in neural
network is much quicker than large AMS circuit simulations,
i.e. ML can solve both challenges. Our work in [33] showed
how the electrical properties and full electrical behavior of
transistors in both FinFET and NCFET can be modeled with
neural networks. Fig. 13 shows how OFF-current, ON-current,
subthreshold slope and threshold voltage can be matched
with neural networks (compared to the BSIM-CMG transistor
model) in a 14nm FinFET transistor.

However, for large-scale digital circuits, standard cell de-
signs are more typical. Circuits are not build transistor by
transistor, but from foundry-provided standard cells, from sim-
ple logic gates to complex cells like adders and ALUs. These
standard cells can be estimated in AMS circuit simulators (e.g.,
to find their true worst-case aging for the slow-slow corner
[35]) and thus tools like CARAT [30] could be used. However,
standard cell characterization involves the simulations of thou-
sands of standard cells under many different signal slews, load

Machine Learning on the Transistor and Standard Cell Level 9

relation to the total variance. The 𝑅2 score is defined as

𝑅2 = 1 −
∑ (𝑌true − 𝑌pred)2∑ (𝑌true − 𝑌true)2 (1)

where 𝑌pred is the predicted value, 𝑌true is the actual value (from the test set), and
𝑌true is the mean value of the test set. An 𝑅2 score of 1 indicates perfect accuracy,
whereas a score around 0 represents randomly guessing a value around the mean.
The interpolation of two individual NNs as described in the next section 4.2 is
implemented with a custom Python script, first invoking the individual NNs and
interpolating the results afterward.

4.2 Data Scaling

Modeling the transfer curve is a challenge since this I-V curve spans multiple orders
of magnitude in terms of currents (small leakage current, yet million times stronger
drive currents). Therefore, applying standard ML techniques when using the mean
squared error (MSE) as the fitness function during training is problematic. While this
works fine for large current values, smaller values exhibit high relative errors. The
MSE value is dominated by the mismatch in the high-value region and the errors
in small values are not weighted enough. However, key transistor characteristics
like the sub-threshold slope and leakage current 𝐼off is determined within this lower-
value range. Thus key transistor parameters are susceptible to error due to inadequate
training. This is a common problem also faced by other works [22]. Figure 4 illustrates
this problem. In the linear representation on the left side, the I-V curves of SPICE
and the NN clearly overlap. In the logarithmic plot on the right side, the problem
becomes apparent: For lower values, the NN curve diverges from the SPICE baseline,
eventually disappearing when negative values are predicted. The sub-threshold slope
and leakage current cannot be derived properly. Our solution to this problem is to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.5

1

1.5

2

·10−5

Vth𝐼off

𝐼on

𝑉𝑔𝑠 [V]

𝐼 𝑑
[A

]

NN prediction
SPICE baseline

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10−10

10−9

10−8

10−7

10−6

10−5 Vth

𝐼off

𝐼on

𝑆𝑆

𝑉𝑔𝑠 [V]

𝐼 𝑑
[A

]

NN prediction
SPICE baseline

Fig. 4: 𝐼𝑑-𝑉𝑔𝑠 curve with 𝑉𝑑𝑠 = 0.1 V. To determine the sub-threshold slope (𝑆𝑆)
visually, the plot is repeated in logarithmic scale on the right side.

Fig. 13: Neural network transistor model [33] matching the
industry-standard AMS transistor model BSIM-CMG in the
electrical behavior of a FinFET transistor.

DesignerFoundry

Cell
Library

Static Timing
Analysis

Circuit Design
(gate level netlist)

Performance Metric
(critical path delay)

DTCO Design Feedback
(metric → updated parameters)

Machine
Learning

for Cell Library
generationML Training

DTCO
Parameter
Selection

Fig. 14: Design technology co-optimization with our neural-
network-based standard cell characterization from [34].

capacitances, temperatures and voltages. Hence, in [34] we
provide a machine learning approach to characterize standard
cells with neural networks. This approach then enables the
reliability estimation of large-scale digital circuits as well as
design technology co-optimization (optimizing transistors as
well as the circuit itself) as shown in Fig.14.

V. CONCLUSION AND SUMMARY

In this special session paper, we have discussed how
machine learning (ML) approaches can play a major role
when it comes to IC test and reliability. We summarized
the major reliability degradation sources for interconnects and
transistors and how advanced neural networks and GPU-based
approaches can significantly accelerate reliability estimations
which is a key when it comes to analyzing complex SoCs.

ACKNOWLEDGEMENT

The work of H. Amrouch, V. M. van Santen, and I. Polian
was partially supported by Advantest as part of the Graduate
School “Intelligent Methods for Test and Reliability” (GS-
IMTR) at the University of Stuttgart.

REFERENCES

[1] W. Ping, K. Peng, A. Gibiansky, S. Ömer Arik, A. Kannan, S. Narang,
J. Raiman, and J. Miller, “Deep voice 3: 2000-speaker neural text-to-
speech.” CoRR, vol. abs/1710.07654, 2017.

[2] B. Dolhansky, J. Bitton, B. Pflaum, J. Lu, R. Howes, M. Wang, and
C. Canton-Ferrer, “The deepfake detection challenge dataset,” CoRR,
vol. abs/2006.07397, 2020.

[3] H. Stratigopoulos, “Machine learning applications in IC testing,” in 2018
IEEE 23rd European Test Symposium (ETS), May 2018, pp. 1–10, iSSN:
1558-1780.

[4] M. Pradhan and B. B. Bhattacharya, “A survey of digital circuit testing
in the light of machine learning,” WIREs Data Mining and Knowledge
Discovery, vol. 11, no. 1, Jan. 2021.

[5] Y. Sun and S. Millican, “Test Point Insertion Using Artificial Neural
Networks,” in IEEE Computer Society Symp. on VLSI, 2019.

[6] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu,
“High Performance Graph Convolutional Networks with Applications
in Testability Analysis,” in IEEE/ACM Design Automation Conference,
2019.

[7] A. B. Chowdhury, B. Tan, S. Garg, and R. Karri, “Robust Deep Learning
for IC Test Problems,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2021, accepted.

[8] D. S. Weld and G. Bansal, “The challenge of crafting intelligible
intelligence,” Communications of the ACM, vol. 62, no. 6, pp. 70–79,
May 2019.

[9] C. Molnar, Interpretable Machine Learning. github.io, 2019, https:
//christophm.github.io/interpretable-ml-book/.

[10] T. Miller, “Explanation in artificial intelligence: Insights from the social
sciences,” Artificial Intelligence, vol. 267, pp. 1–38, Feb. 2019.

[11] Z. Zhang, K. Chakrabarty, Z. Wang, Z. Wang, and X. Gu, “Smart
diagnosis: Efficient board-level diagnosis and repair using artificial
neural networks,” in 2011 IEEE International Test Conference, 2011,
pp. 1–9.

[12] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting
Model Predictions,” in Advances in Neural Information Processing
Systems 30. Curran Associates, Inc., 2017, pp. 4765–4774.

[13] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. San Francisco California USA: ACM, Aug. 2016, pp.
1135–1144.

[14] P. Krishnamurthy, A. B. Chowdhury, B. Tan, F. Khorrami, and R. Karri,
“Explaining and Interpreting Machine Learning CAD Decisions: An IC
Testing Case Study,” in Proceedings of the 2020 ACM/IEEE Workshop
on Machine Learning for CAD. Virtual Event Iceland: ACM, Nov.
2020, pp. 129–134.

[15] P. Krishnamurthy, A. Sarmadi, and F. Khorrami, “Explainable Classi-
fication by Learning Human-Readable Sentences in Feature Subsets,”
Information Sciences, Feb. 2021.

[16] P. P. M. Raissi and G. E. Karniadakis, “Deep hidden physics models:
Deep learning of nonlinear partial differential equations,” The Journal
of Machine Learning Research, 2018.

[17] ——, “Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial
differential equations,” Journal of Computational Physics, 2019.

[18] P. P. M. Raissi and G. E. Karniadakis, “Physics informed deep learning
(part i): Data-driven solutions of nonlinear partial differential equations,”
arXiv e-prints, 2017.

[19] J. Sirignano and K. Spiliopoulos, “Physics-informed deep generative
models,” arXiv e-prints, 2018.

[20] ——, “DGM: A deep learning algorithm for solving partial differential
equations,” Journal of Computational Physics, 2018.

[21] J. Berg and K. Nyström, “A unified deep artificial neural network
approach to partial differential equations in complex geometries,” Neu-
rocomputing, 2018.

[22] S. P. W. Jin and S. X.-D. Tan, “Data-driven electrostatics analysis based
on physics-constrained deep learning,” Proc. Design, Automation and
Test In Europe Conf. (DATE), 2021.

[23] A. L. I. E. Lagaris and D. I. Fotiadi, “Artificial neural networks for
solving ordinary and partial differential equations,” IEEE transactions
on neural networks, 1998.

[24] Y. S. C. Om Prakash, Girish Pahwa and H. Amrouch, “Transistor self-
heating: The rising challenge for semiconductor testing,” in 2021 IEEE
VLSI Test Symposium. IEEE, 2021.

[25] V. M. Van Santen, J. Martin-Martinez, H. Amrouch, M. M. Nafria, and
J. Henkel, “Reliability in super-and near-threshold computing: A unified
model of rtn, bti, and pv,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 65, no. 1, pp. 293–306, 2017.

[26] V. M. Van Santen, H. Amrouch, P. Kumari, and J. Henkel, “On the
workload dependence of self-heating in finfet circuits,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp.
1949–1953, 2019.

[27] O. Prakash, G. Pahwa, C. K. Dabhi, Y. S. Chauhan, and H. Amrouch,
“Impact of self-heating on negative-capacitance finfet: Device-circuit
interaction,” IEEE Transactions on Electron Devices, 2021.

[28] V. M. van Santen, H. Amrouch, and J. Henkel, “Modeling and mitigating
time-dependent variability from the physical level to the circuit level,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66,
no. 7, pp. 2671–2684, 2019.

[29] V. M. van Santen, J. Diaz-Fortuny, H. Amrouch, J. Martin-Martinez,
R. Rodriguez, R. Castro-Lopez, E. Roca, F. V. Fernandez, J. Henkel,
and M. Nafria, “Weighted time lag plot defect parameter extraction and
gpu-based bti modeling for bti variability,” in 2018 IEEE International
Reliability Physics Symposium (IRPS). IEEE, 2018, pp. P–CR.

[30] V. M. van Santen, S. Thomann, C. Pasupuleti, P. R. Genssler, N. Gang-
war, U. Sharma, J. Henkel, S. Mahapatra, and H. Amrouch, “Bti and
hcd degradation in a complete 32× 64 bit sram array–including sense
amplifiers and write drivers–under processor activity,” in 2020 IEEE
International Reliability Physics Symposium (IRPS). IEEE, 2020, pp.
1–7.

[31] V. M. van Santen, H. Amrouch, and J. Henkel, “Reliability estimations
of large circuits in massively-parallel gpu-spice,” in 2018 IEEE 24th
International Symposium on On-Line Testing And Robust System Design
(IOLTS). IEEE, 2018, pp. 143–146.

[32] V. M. van Santen, F. L. F. Diep, J. Henkel, and H. Amrouch, “Massively
parallel circuit setup in gpu-spice,” IEEE Transactions on Computers,
2020.

[33] F. Klemme, J. Prinz, V. M. van Santen, J. Henkel, and H. Amrouch,
“Modeling emerging technologies using machine learning: challenges
and opportunities,” in Proceedings of the 39th International Conference
on Computer-Aided Design, 2020, pp. 1–9.

[34] F. Klemme, Y. Chauhan, J. Henkel, and H. Amrouch, “Cell library
characterization using machine learning for design technology co-
optimization,” in 2020 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD). IEEE, 2020, pp. 1–9.

[35] V. M. van Santen, H. Amrouch, and J. Henkel, “New worst-case timing
for standard cells under aging effects,” IEEE Transactions on Device
and Materials Reliability, vol. 19, no. 1, pp. 149–158, 2019.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

