
1

Robust Deep Learning for IC Test Problems
Animesh Basak Chowdhury, Benjamin Tan, Member, IEEE, Siddharth Garg, and Ramesh Karri, Fellow, IEEE

Abstract—Numerous machine learning (ML), and more re-
cently, deep learning (DL) based approaches, have been proposed
to tackle scalability issues in electronic design automation,
including those in integrated circuit (IC) test. This paper ex-
amines state-of-the-art DL for IC test and highlights two critical
unaddressed challenges. The first challenge involves identifying
fit-for-purpose statistical metrics to train and evaluate ML model
performance and usefulness in IC test. Our work shows that cur-
rent metrics do not reflect how well ML models have learned to
generalize and perform in the domain-specific context. From this
insight, we propose and evaluate alternative metrics that better
capture a model’s likely usefulness in the IC test problem. The
second challenge is to choose an appropriate input abstraction so
as to enable an ML model to learn robust and reliable features.
We investigate how well DL for IC test techniques generalize by
exploring their robustness to perturbations that alter a netlist’s
structure but do not alter its functionality. This paper provides
insights into challenges via empirical evaluation of the state-of-
the-art and offers guidance for future work.

Index Terms—Machine Learning, Deep Learning, Adversarial
Perturbations, VLSI Testing

I. INTRODUCTION

The increasing complexity of integrated circuits (IC) poses
challenges throughout the design flow, including scalability
problems in verification and test. To overcome such chal-
lenges, researchers have proposed machine learning (ML)
based techniques (ML) [1]–[4], and more recently, emerging
techniques using deep learning (DL). For example, in lieu
of lithography simulation, designers can use a deep neural
network (DNN) to detect design hotspots [5] in a physical
layout. In physical design, designers can use DNNs to estimate
routability [6]. The power of DL comes from its ability to
approximate functions [7], [8], offering faster test turnaround
compared to heuristic and analytic techniques [3], [9]. To
harness this capability, test engineers need to map IC test
problems to “learning-based” ML problems. This requires an
in-depth understanding of the IC test domain for selecting
appropriate features from a design as inputs to an ML model.

Since ML/DL is data-driven, care must be taken to avoid
problems such as the potential fragility of trained models.
Otherwise, poorly trained models incur additional manual
effort when deployed in a system. In a typical Electronic
Design Automation (EDA) design life-cycle, such situations
might arise after deploying ML models with poor predictive
and classification performance. If ML models are blindly
trusted, manual effort for re-doing the work using conventional
methods can undo the efficiency gains purported by adopting
ML-in-the-loop. The entire production cycle and the timeline

A. B. Chowdhury, B. Tan, S. Garg, and R. Karri are with the Department
of Electrical and Computer Engineering, New York University, Brooklyn, NY,
11201 USA. E-mail: {abc586, benjamin.tan, siddharth.garg, rkarri}@nyu.edu

for chip manufacturing is delayed. It is therefore critical for
designers to properly assess the “quality” of a model.

In this paper, we study two challenges in using DL for IC
testing that arise from a critical analysis of state-of-the-art
works in this area. First, we observe that prior approaches
tend to use conventional ML metrics such as accuracy, F1
score, or mean square error to train and assess the trained
models; in typical workflows, a model is deployed only after it
is deemed “fit-for-purpose” using these metrics. However, are
these metrics meaningful with respect to the final (IC testing)
objective? We show that regular ML metrics can mislead and
often poorly correlate with test-specific metrics. We investigate
the reasons for this mismatch and argue for the use of new ML
metrics in model evaluation. From these insights we formulate
loss functions tuned to the IC testing context.

The second challenge we address is the selection of ap-
propriate features to train generalized and robust DL models
for IC testing. Specifically, we investigate whether models
that learn from features used in state-of-the-art works are
robust to small perturbations of the input. Robustness provides
some evidence of how well the trained models generalize to
new inputs. Adversarial “attacks” have been demonstrated in
various image-based settings [10] and have extended to ML-
based CAD, including DL-based lithographic hotspot detec-
tion [11]. While past studies in adversarial ML invoke arbitrary
modifications of images, the inputs for IC test are structured—
one might assume that this affords better robustness. However,
is DL for IC test robust? Our study sheds light on this question.

In exploring these two challenges, we provide new insights
into the practical application of DL in the domain of IC
testability. Our studies reveal potential shortcomings while
applying DL-based techniques in IC testing on public datasets.
Precisely, this work systematically investigates two important
aspects of DL in the context of IC testing:

1) Robustness of Metrics: Do classical metrics for classifi-
cation and regression adequately measure performance of
ML/DL models, used for solving IC testability problems,
as implied by the literature?

2) Robustness of Models: Are approximate testability mea-
sures, used in state-of-the-art DL for IC test, adequate for
models to meaningfully learn “IC testability”?

Paper Organization From our study, we identify future
research perspectives and open challenges at the intersection
of DL and IC test. In Section II we present some helpful
background concepts. Readers familiar with DL principles
and common ML evaluation metrics can skip this section. In
Section III, we explore related work in ML for IC test. We
present our motivating application in Section IV. We conduct
robustness analyses in our case studies in Section V and
Section VI, providing insights into our research questions. We
present discussion in Section VII. Section VIII concludes.

2

II. PRELIMINARIES

This section outlines some helpful background material.
Readers familiar with these concepts may continue to Sec-
tion III, where we focus on the intersection of ML and test.

A. Traditional ML Techniques

The field of ML broadly encapsulates the study of tech-
niques for “training” a mathematical model on data to make
predictions on new, unseen samples. Traditional ML tech-
niques include decision trees [12], support vector machines
(SVMs) [13], Bayesian networks [14], clustering [15] and
so forth. These techniques require some level of feature
engineering and domain expertise to appropriate map into
ML problems. We encourage readers to peruse Bishop’s
work [16] for more details about these traditional techniques
and metrics. Recently, researchers have explored techniques
based on organizing “artificial neurons” into complex, ”deep”
architectures—such DNNs demonstrate state-of-the-art classi-
fication performance in domains such as image classification,
natural language processing, and drug discovery.

B. Artificial Neural Networks (ANN)

(ANNs) are a collection of “neurons” and are regarded
as universal function approximators [7]. This technique is
inspired by the structure and functionalities of a biological
neural network. An ANN architecture consists of one input
layer, one (or more) hidden layers and an output layer1.
Typically, for a feed-forward ANN, every node in a layer is
connected to every other node in the next layer. At every node,
the node inputs are multiplied with a “learned” weight. These
weighted inputs are summed with an additional bias. Finally,
the output is passed through a non-linear activation function
(e.g., ReLU or sigmoid). These outputs are inputs to the next
layer. The ANN can be mathematically described as:

yk = F

(m∑
i=0

wk
i xi + bk

i

)
(1)

• xi is ith input value of m-dimensional input vector.
• wk

i is ith weight value of m-dimensional weight vector,
corresponding to kth node of next layer.

• bki is the bias term.
• F represents the activation function.
• yk is the kth output node of next layer.

C. Graph Convolution Network (GCN)

There are many specialized architectures of DNNs, includ-
ing convolutional neural networks (CNN) and recurrent neural
networks (RNN), each tailored for a class of problems. The
GCN [17] operates on graphs. A GCN performs two tasks
in each hidden layer: aggregation, followed by encoding. In
aggregation, each node collects information from its neigh-
borhood and combine it with its own information. As hidden
layers are added to the GCN, the k-hop neighborhood expands,

1Often, a network with multiple hidden layers is referred to as a DNN.

aggregating neighborhood information into each node. In the
encoding step, a non-linear activation function (e.g., ReLU) is
applied to the inputs to produce the layer outputs. In the output
layer, the encoded information for each node goes through a
softmax layer for classification. The softmax layer squashes
the scores of each node in the range of [0, 1] which represents
the probabilistic value of each class of classifier output.

Formally, the GCN takes as input a Graph G = (V,E,X),
where V denotes nodes in the graph and E denotes the
connectivity among nodes. X denotes node attributes, where
X ∈ Rn×d is the feature matrix with each node v having
feature xv ∈ Rd. Initially, the input layer information h0

v are
the node features itself (Eq. 2). Encoding of nodes at kth
hidden layer is denoted by hk

v . The aggregation (Eq. 3) and
encoding (Eq. 4) steps as defined by Kipf et al. [17] are:

h0
v = xv (2)

gk
v =

∑
u∈N(v)

⋃
v

hk
v√

N(u)
√

N(v)
(3)

hk+1
v = σ(Wk × gk

v) (4)

D. Typical Metrics for Evaluating Classification Performance

There are numerous metrics for evaluating the performance
of a trained ML model. For binary classification problems:

Precision is the ratio of true-positive (TP) and predicted
positive samples (true-positive + false-positive). Higher preci-
sion signifies fewer false-positives generated by the model.

Precision = TP/(TP+ FP) (5)

Recall is the ratio of true and actual positive samples (true-
positive + false-negative). High recall indicates that most of
the actual positive samples are correctly predicted as positive.

Recall = TP/(TP+ FN) (6)

F1 score is the harmonic mean of precision and recall
and indicates a balance between the two. For an imbalanced
dataset, lower F1 score may indicate poor precision or recall.

F1 = 2TP/(2TP+ FP+ FN) (7)

E. Non-linear Regression

Non-linear regression is a statistical analysis tool in which
the relationship between variables is hypothesized to be non-
linear. The hypothesis function Y is a non-linear function of
independent variables or input features x, represented as:

Y = f(x, θ∗) + ε (8)

x is d-dimensional input vector. θ∗ is d-dimension weight
vector. ε is the bias term. f is non-linear function.

F. Metrics for Evaluating Regression Performance

For evaluating the performance of a non-linear regression
model, it is important to understand how well the model fits
the training dataset. We describe two well-known statistics typ-
ically used to measure goodness-of-fit for regression models.

3

Mean Squared Error (MSE) is the mean of the difference
between predicted output values compared to the actual values
of the observations, squared. A low MSE indicates that the
model has fitted well on the training dataset, but does not
preclude model over-fitting. It is important to do k-fold cross
validation to generalize the regression model over test data.

MSE =
1

N

N∑
i=0

(yi
actual − yi

predicted)
2 (9)

G. k-fold Cross-validation

k-fold cross-validation is typically used to estimate average
generalization error of an ML model. The data is initially
divided into k-bins and training is performed using data from
k− 1 bins, and tested on the kth bin. The process is repeated
k times; each time a new bin is considered as the test set. One
of the key features of cross-validation is that each data sample
is considered once as part of the test set and k − 1 times as
part of the training set—the prediction error is averaged over
k times. The performance of cross-validation heavily depends
on choice of K and set size α. The cross validation error
(CVE) is typically computed as shown in Eq. 10.

CVE(α) =
1

K

K∑
i=0

Ei(α) (10)

III. RECENT ADVANCES IN ML FOR IC TEST

IC test researchers face long-standing problems in IC post-
fabrication defect detection and diagnosis in large circuits, giv-
ing rise to design-for-test (DFT) and design-for-debug (DFD)
architectures. Increased number of gates and complexity in an
IC have led to scalability issues in using heuristic approaches
for inserting DFT/DFD architectures along with increased
time in entire design processes [9], [18], [19]. Hence, ML
techniques have attracted interest in the IC test community,
prompting application to NP class IC test problems. ML in IC
test [20], [21] is nascent, motivating us to identify and seek
insights into challenges that inform ongoing and future studies.

A. Machine Learning in Test and Diagnosis

For testability analysis and test point insertion (TPI), re-
searchers have used a variety of ML-based techniques like
non-linear classification and regression. The primary motiva-
tion for adoption is scalability and reducing time-bandwidth
for DFT. In general, an ML model is first trained “offline”
on previously acquired data, incurring a one-time training
cost. In prior works [18], [19], [22], [23], authors propose
classical ML approaches like SVMs and Naı̈ve Bayes for chip
and board-level functional fault diagnosis. The techniques use
large scale volumetric failure log data to identify possible sites
of chip failure. In scan-chain diagnosis, techniques include
unsupervised learning for reasoning based diagnosis [24].

Pradhan et al. [19] implement non-linear regression by
applying support vector regression (SVR) for estimating de-
tectability loss in the presence of X-values. They formulate
the problem of detectability loss estimation as a prediction

problem. The input features to the model include structural
features extracted from the directed acyclic graph (DAG)
representation of the netlist. For model evaluation, they use
the coefficient of determination as the metric to compare the
predicted output versus actual output. It should be noted,
however, that metrics like coefficient of determination are
not always a good fit for evaluating non-linear regression
models [25], and therefore, more caution is required for
evaluating their efficacy. These works demonstrate that ML can
be used as a drop-in replacement for heuristic-based solutions
in IC testing and diagnosis problems.

B. Deep learning for IC Testability and Diagnosis

In recent years, techniques using ANNs (including DL) have
emerged. In prior work [3], [4], researchers use ANNs to assist
iterative TPI in circuits. The ANN model is trained to predict
the improvement in fault coverage of a netlist when a node is
chosen as a possible test point. The inputs to the ANN include
COP [27], the gate type of the node itself, and its neighboring
nodes. The results show that ANN-based techniques speed up
TPI while yielding better coverage results when compared
with TPI of conventional COP-based heuristics plus fault-
simulation [29]. In another work [9], TPI is formulated as
a node classification problem and solved using a graph convo-
lution network (GCN) [17]. More specifically, the problem is
formulated as a semi-supervised node classification in DAGs.
The input features to the model are the logic level and the
SCOAP [28] metrics for each node in the netlist. The nodes
are labeled as easy-to-observe or hard-to-observe, based on
the output of a commercial DFT tool. The authors show that
the GCN-based approach surpasses the performance of the
commercial DFT tool with respect to number of test points
inserted with comparable coverage using fewer test patterns.
Table I, summarizes ML solutions for TPI and diagnosis.

Although DL-based applications appear to out-perform con-
ventional DFT-based heuristics, we observe that there are no
intuitions as to why this is the case, especially as DL models
are trained using labels provided by DFT tools (as their true
or ground-truth values). Furthermore, the application of DL is
new in IC test and diagnosis, and none of the aforementioned
works consider problems of robustness, address wider consid-
erations for model generalizations, or contextualize limitations
of existing ML-metrics. We seek insights in these areas.

IV. INVESTIGATING STATE-OF-THE-ART DL FOR TPI

We consider the problem of circuit testability as our moti-
vating application for DL in IC test. The testability of an IC is
defined as the hardness of controllability and observability of
stuck-at faults (s-a-fs) at every node in a netlist. The motivation
to adopt DL-based TPI over conventional heuristics+fault-
simulation-based solutions is to reduce time for generating
quality test points while being scalable to large circuits. TPI
involves two parts: (1) identifying locations to insert test points
and (2) evaluating the effect of a test point at a given location
(to maximize coverage, minimize test points, or both).

We investigate approaches that use DL-based formulations
of TPI for improving fault coverage of the netlist. The first

4

TABLE I
PRIOR WORK ON ML FOR IC TEST AND DIAGNOSIS

Prior
work

Target
Application

Publicly available
benchmarks

Input
Features

ML-model
evaluation metric

Open-source
Implementation

Pradhan et al. [19] Detectability loss 3 DAG topological features [26] R2-score 7
Sun & Millican [3] / Millican et al.

[4] TPI 3 COP [27] MSE 3
Ma et al. [9] TPI 7 SCOAP [28] F1 score 7

Netlist
 N1

ATPG based fault
simulation

GCN based classifier

Netlist
Nm

Netlist
Nk

{ '0' : G1,G2;
'1' : GI}

Labels :
easy/hard to

observe nodes

Input
Features

 G1 : [L1,CC01,

CC11,CO1]
G2 : [L2,CC02,

CC12,CO2]
GI : [LI,CC0I,

CC1I,COI]

(a)

ProcessProcess

Netlist

ATPG-based
fault

simulation

Heuristic
based TPI

Desired Fault
Coverage?

GCN
classifier

"hard to
observe"

node
determination

Impact
evaluation
based TPI

"hard to
observe"

node
classification

Report
Statistics

Yes

No

Conventional
flow

DL-based
flow

(b)

Fig. 1. DL-based (a) training flow, (b) classification for GCN-based TPI [9].

uses DL-based models for classification to identify “hard-to-
observe” nodes as candidates for TPI. The second uses DL-
based models for regression to predict the improvement in
fault coverage given a candidate test point.

A. Case Study 1: Using DL for Classification

1) Problem Formulation: Our first case study is GCN-based
TPI by Ma et al. [9]. Assuming a single s-a-f model, a netlist is
considered highly testable if sufficient test vectors are available
to excite s-a-f faults (i.e., controllability) and propagate the
effect to any primary output (i.e., observability) for all nodes
in the netlist.

Ma et al.’s formulation [9] focuses on observability im-
provement (this can be extended to consider controllability).
The goal of the GCN is to identify nodes in the netlist where
automatic test pattern generation (ATPG) algorithms fail to
propagate the fault effect to primary outputs. Such nodes are
classed as hard-to-observe. The objective of TPI is to add test
points in the netlist and aid ATPG algorithms propagate s-a-f
of hard-to-observe nodes to primary outputs.

Definition 1 (Testability as a Classification Problem). Given a
set of netlists with nodes annotated as easy-to-observe or hard-
to-observe, train a classifier that accurately predicts hard-to-
observe nodes for a new netlist.

2) DL-based Flow: We illustrate the DL-based classifica-
tion and training flow in Fig. 1. Ma et al. [9] propose a
multi-stage classification using GCNs as building blocks for
inserting test points into a circuit. The GCN-based approach

was chosen primarily for two main reasons: (1) GCNs are a
natural match to a circuit netlist (given that a netlist is a DAG),
and (2) the approach purportedly scales to large netlists.

Each node in the circuit is characterized using a four
dimensional feature vector [LL,CC0,CC1,CO], as shown
in Fig. 1. LL is the logical level of a node in a circuit,
while CC0, CC1 and CO are the SCOAP parameters for 0-
controllability, 1-controllability, and observability of each node
in the circuit, respectively. The ground-truth labels for each
node (“hard-to-observe” or “easy-to-observe”) are obtained
from an industrial DFT tool. The GCN classifier consists of
K-layers of aggregation and encodes node information up to
the K-hop neighborhood for each node. This process produces
a 128-dimensional feature vector for each node. These vectors
are passed on to a fully-connected layer for classification.

To alleviate the problem of training on imbalanced datasets,
Ma et al. propose a multi-stage classification approach, where
GCNs are connected in series. A fraction of the nodes that
are predicted as easy-to-observe (i.e., negative samples) with
high confidence by the first GCN are “ignored” by GCNs
in the subsequent stages. These negative samples are pruned
over various stages and the hard-to-observe (positive sam-
ples) are reported as candidate locations for TPI. Test points
are obtained iteratively by selecting the top-ranked hard-to-
observe nodes where inserting a test point would provide the
most impact in covering other hard-to-observe nodes in the
netlist. Finally, the coverage improvement is measured after
TPI at the “hard-to-observe” locations as identified by the
GCN and compared against the coverage improvement after
TPI performed by DFT tools.

B. Case Study 2: Using DL for Regression
1) Problem Formulation: One objective for TPI is to

improve fault-detection capability when using random test
vectors. This is explored in Sun and Millican’s work [3], where
an ANN is used to predict the fault coverage improvement
of candidate nodes for TPI. This approach aims to avoid
costly fault-simulations to ascertain the exact fault coverage
improvement in every iteration.

Definition 2 (Testability as a Regression Problem). Given
a set of netlists, randomly select a set of nodes. For each
node, generate a sub-circuit and measure fault coverage
improvement before and after inserting a test point at that
node. Train a model to predict fault coverage improvement of
a test point inserted at any given node in a netlist.

2) DL-based Flow: We illustrate in Fig. 2 the ANN-based
training process as proposed by Sun and Millican [3]. In

5

Netlist-N1 Netlist-NmNetlist-Nk

Candidate Nodes
Selection

Sub-circuit population [S]

-

Prediction label

ANN Regressor

Input Feature

Sk :[{CCki}
,{COki} , Gatek]

0 <= i < (N+M+1)

(a)

Netlist

Heuristic
based TPI

Desired Fault
Coverage?

ANN
regressor
based TPI

Report
Statistics

Yes

No

Conventional
flow

DL-based
flow

(b)

Fig. 2. (a) Training flow for ANN-based coverage change prediction and (b)
DL-based regression, as proposed in prior work [3]

this flow, an ANN performs non-linear regression to predict
improvement in the overall fault detectability of a netlist when
test points are inserted at a given node in the netlist. The ANN
model accepts an input of fixed dimension 2× (N +M) + 3
representing a sub-circuit, where M and N are arbitrary values
chosen by the designer. For nodes with fewer than M or
N nodes in their fan-in/fan-out cone, the authors use COP
controllability and observability values of primary inputs and
outputs. During inference, the model iteratively predicts fault
coverage improvement for a test point inserted at each node.
This identifies the top k nodes where an inserted test point
might improve fault coverage. Test points are inserted until
some objective is met (e.g., coverage goal or number of test
points).

To train the ANN, fault-simulation is performed on the
netlists using random test vectors. Nodes are selected at
random from the netlists as training data. Sub-circuits are
generated using M and N nodes from a node’s fan-out and
fan-in cone, respectively. Fault coverage improvement of the
sub-circuit is measured before and after inserting a test point
and the process is repeated for each training node. As shown
in Fig. 2(a), the input features of a node comprise COP
controllability and observability parameters of nodes in its
sub-circuit and its driving gate. Coverage is determined by
checking the percentage of faults stimulated against a target
fault list. Sun and Millican [3] report that their ANN-based
TPI outperforms conventional COP-based TPI heuristic [29]
in terms of random test pattern fault coverage improvement.

C. Identifying Limitations and Challenges

1) DL-model Robustness: Firstly, approximate testability
measures like SCOAP and COP are the predominant input
feature for DL-based TPI techniques [3], [4], [9]. However,
when preparing inputs for DL-based flows, these techniques
do not capture either the fault-simulation information (dy-
namic/runtime) of the entire circuit or precise Boolean value
information flow (static/SAT-based encoding) from primary in-
puts to outputs in the DL input representation. These static and
dynamic analyses of a circuit determine the optimal test points
to be inserted. Although such analyses are time consuming on

large circuits, (something that DL-based techniques seek to
avoid) they capture the actual “hardness” of testability.

Conventional TPI and test generation algorithms like the
D-algorithm, FAN, PODEM and HITEC/PROOFs rely on
information flow, topological features, and fault-simulation of
the network [30] in addition to approximate testability mea-
sures. In part, the use of complementary features (alongside
SCOAP/COP) addresses decades-old critiques regarding the
inaccuracies and coarseness of relying solely on SCOAP/COP
testability metrics [31]. In fact, Savir [32] showed that good
controllability and observability values do not necessarily
guarantee good testability. As state-of-the-art DL-based tech-
niques rely predominantly on approximate testability measures
to learn and predict node testability, whether a model trained
with these generalizes well needs investigation.

2) Robustness of Metrics for Model Quality: An important
part of any ML-based workflow is evaluation of the trained
model’s quality; if the model appears to perform well in its
intended classification/regression role, it can be deployed in
the wider system. This has implications when trying to assess
the suitability of a model. If a model makes quality predictions,
decisions made on those predictions should produce good
results in the overall objective.

Take the GCN-based approach [9] for identifying “hard-to-
observe” nodes—a model that classifies such nodes accurately
should inform proper TPI. In general, the prevailing metric
for assessing the quality of ML models are classification
accuracy and F1 score, and these are used as part of training
(in formulating loss functions). However, when it comes to
ML for IC test, we contend these metrics poorly reflect the
quality of the final ML-model guided solutions. As discussed
earlier, the solution space of TPI is NP-complete and no DFT
tool guarantees an optimal TPI solution. In the GCN-based
approach [9], the model is attempting to learn the heuristics
of a particular DFT tool by training on data labels produced
by that tool. In a sense, this is a proxy objective to the true
objective of learning to improve testability. The accuracy and
F1 score of TPI of the GCN model is one way to characterize
the capability of the model to approximate the proprietary
solution of a DFT tool.

For a new (unseen) netlist, used to validate a trained model,
a model with good accuracy and F1 score indicates that it can
replicate the heuristic. Conversely, a poor accuracy and F1
score should imply that the model is not doing well. As such,
does a poor score mean that “bad” models offer no utility? As
we will show in Section VI, the inability of a DL model to
exactly replicate an industrial DFT heuristic does not guarantee
that the ML-guided TPI results in poor/no improvement in
fault coverage. This raises a broader question: are conventional
metrics able to guide the model to learn “testability”? Since,
the end objective of DL models is to improve fault coverage,
the loss function of DL model should incorporate metrics that
correlate well with fault coverage improvement of a netlist.

A different line of argument can be made in the case of the
ANN-based approach [3]. As opposed to DFT-based heuristics
for inserting test points, the ANN model estimates the effect
of an inserted test point (as would be measured by true value
fault-simulation); in regression, metrics such as MSE provide

6

the measure of prediction accuracy. In principle, because
decisions are made on (estimates of) the impact of inserting
a test point directly—as predicted by the model—ANN-based
TPI might work better than DFT heuristics to identify test
point locations and still avoid the cost of performing actual
fault-simulation [3]. Thus, if one wants to use the predicted
change in fault coverage to guide TPI, one would expect
that good predictive performance, indicated by low MSE, is
necessary for meaningful insertion. However, as we will see
in Section VI, even where the MSE of a model is high, it turns
out that one might still be able to use the ANN to select good
locations for TPI. In other words, it is not necessary that the
exact predicted change in fault coverage has to be accurate.
Instead, a model that predicts fault coverage improvement with
good rank correlation, as an alternative metric, provides a
better guide for deciding which test points to insert.

V. EXPERIMENTAL SETUP AND MODEL BASELINE

To explore the complexities and pitfalls of using DL for
IC test, we design experiments to provide insight into the
challenges discussed earlier. For each case study:

1) We analyze the baseline results after training models on
public IC datasets using the approaches proposed in the
literature. We investigate DL-based TPI and compare it
with TPI performed by an industrial DFT tool.

2) We investigate robustness. To do this, we craft a redun-
dant pattern that, once inserted into a netlist, should not
affect the testability of the circuit, but throw-off the model
(i.e., the pattern can be seen as analogous to an adversarial
perturbation). We explore the effectiveness of our “attack”
to draw insights into model robustness.

For these studies, we implement the multi-stage GCN [9] and
ANN [3], described in Section IV.

Circuits We begin with benchmark circuits from the pub-
licly available ISCAS, ITC, and EPFL benchmarks [33]–[36].
We obtain SCOAP/COP features and labels for the circuits
using Mentor’s Tessent 2019.1 DFT tool. We perform experi-
ments on an Intel Xeon 3.2GHz processor, with 32 GB RAM
and 12 GB NVIDIA GTX 1080 Ti GPU. All the benchmarks
are fully scanned and synthesized using ABC [37]. We use
the Cadence 90 nm library for synthesis. We use PyTorch
to implement our GCN and ANN models. Table II presents
general dataset statistics.

A. Case Study 1: GCN-based TPI

1) Experiment dataset: The objective of GCN-based TPI is
to insert additional observation points in the netlist at “hard-to-
observe” nodes. To prepare training data, we obtain ground-
truth labels for the nodes in the public benchmark circuits
using the industrial DFT tool. As the DFT tool reports that
all s-a-f are covered without requiring additional test points
for several benchmarks, we experiment only on those circuits
which have hard-to-observe nodes. This set has 11 circuits:
log2, mem ctrl, voter, div, arbiter, b21, b17, b18, s38584, b20
and b22. This dataset has ∼325,000 nodes.

TABLE II
BENCHMARK CHARACTERISTICS

Circuit Total # POS # NEG Max. Max. Max. Max.
Nodes Samples Samples Level CC0 CC1 C0

log2 25970 339 25631 372 162118 160947 68861
mem ctrl 49269 480 48789 115 182 291 334

voter 14712 137 14575 71 747965 741794 2218709
div 68924 758 68166 4373 1122 1218 26751

arbiter 12223 89 12134 89 255 10 586
b17 27814 300 27514 86 1739 1466 1640
b18 82528 824 81704 129 2416 2416 2799
b20 12489 159 12330 67 1046 1024 1386
b21 13073 175 12898 66 984 1071 1410
b22 19026 212 18814 66 1149 1163 1579

s38584 13894 124 13770 24 124 153 159

2) GCN architecture and training: We perform 3-stage
classification using a GCN with K=3. For each classifier,
the number of hidden layers, fully connected layers and their
associated complexities are the same as those proposed by
Ma et al. [9]. We use 300 epochs for end-to-end training, 100
epochs per GCN stage. As the dataset is highly imbalanced
(the number of positive samples—hard-to-observe nodes—is
∼0.8% of the dataset), we use a weighted loss function to
incur a greater penalty for misclassifying the minority class
(i.e., hard-to-observe nodes). We set the weights based on
the ratio of positive to negative samples in the dataset to
ensure high recall of the output. We use the class weight ratio
for negative to positive samples as 0.01, 0.03, and 0.05, for
each of the three respective classifier stages. We use min-max
normalization on our dataset as a pre-processing step. All other
parameters are consistent with those reported in that paper.

3) GCN baseline performance: We use k-fold cross-
validation, using nine circuits for training, one circuit for
validation and the remaining one circuit for testing. We com-
pare the quality of TPI results generated by DFT tool against
those produced by the GCN-based prediction. The results
of k-fold cross-validation, GCN classification, and attained
coverage are reported in Table III. We show the true number
of hard-to-observe (positive label) nodes (as reported by DFT
tool), the total number of positive nodes as classified by the
GCN model (in a single-shot query), the true-positive/negative
node classifications (TP/TN) and false-positive/negative node
classifications (FP/FN), for each circuit. The best F1 score is
0.48. Many circuits have low F1 scores between (0 – 0.48).
As our train/test split is performed at the circuit-level, different
train/test trials use different numbers of nodes. Although, the
accuracy of the GCNs appears high (≥ 94% for the excluded
circuits in a train/test trial), there is a wide range of F1 scores.
We will dig into this apparent contradiction in Section VI.

B. Case Study 2: ANN-based TPI

1) Experiment dataset: ANN-based TPI aims to improve
the fault coverage of a netlist when using random test vectors.
We use large public benchmarks on which the coverage using
random vectors is comparably lower than that achieved by
using test vectors from ATPG to more clearly characterize
any effects on fault coverage. We use 10 circuits from the
benchmark set: arbiter, b17, b18, b19, b21, log2, mem ctrl,

7

TABLE III
CLASSIFICATION AND FAULT COVERAGE RESULTS USING DFT TOOL VS. GCN-BASED APPROACH. ORIG. REFERS TO THE GCN TRAINED WITH THE

TRADITIONAL F1 SCORE, ALT. REFERS TO THE GCN TRAINED USING THE PROPOSED 1-HOP F1 SCORE. NB: F1 SCORE FOR ALT. IS 1 HOP F1 SCORE.

Nodes Classified Overall Metrics Fault Coverage using ATPG (in %)
Hard-to-observe True-Pos. False-Pos. True-Neg. False-Neg. Accuracy F1 score GCN-TPICircuit

DFT Orig. Alt. Orig. Alt. Orig. Alt. Orig. Alt. Orig. Alt. Orig. Alt. Orig. Alt. No TPI DFT-TPI Orig. Alt.

b20 159 308 318 112 133 196 185 12134 12145 47 25 0.98 0.98 0.48 0.72 96.02 99.44 98.34 98.97
b22 212 430 400 153 165 277 235 18537 18558 59 47 0.98 0.99 0.48 0.74 94.87 99.45 97.25 98.64
log2 339 364 342 5 168 359 174 25272 25227 334 171 0.97 0.99 0.01 0.65 85.26 92.37 93.41 93.88

memctrl 480 514 462 69 274 445 288 48344 48401 411 206 0.98 0.99 0.14 0.71 95.71 98.39 98.41 98.65
voter 137 134 134 0 84 134 81 14541 14594 137 53 0.98 0.99 0 0.77 87.31 95.35 95.33 95.35
div 757 189 410 4 305 185 105 67982 68062 753 452 0.99 0.99 0.01 0.71 99.31 99.69 99.33 99.52

arbiter 119 66 107 7 49 59 58 12045 12046 112 80 0.94 0.98 0.08 0.52 99.8 100 99.91 99.96
b21 175 251 181 63 95 188 86 12710 12812 112 80 0.98 0.98 0.3 0.72 99.28 99.89 99.89 99.89
b17 300 571 571 45 177 526 451 26988 27063 255 123 0.97 0.98 0.1 0.47 98.14 99.37 99.12 99.25
b18 824 1653 1400 442 503 1211 897 80493 80807 382 321 0.98 0.98 0.36 0.58 99.24 99.59 99.65 99.75

s38584 124 192 203 12 73 180 130 13590 13640 112 51 0.98 0.98 0.08 0.57 98.19 98.53 98.24 98.5

TABLE IV
REGRESSION RESULTS USING THE ANN-BASED APPROACH. ORIG.

REFERS TO ANN TRAINED USING MSE LOSSES, ALT. REFERS TO USE OF
RANK CORRELATION FOR LOSSES.

Circuits # TP
Valid. Loss Test Loss Fault coverage with random vectors(%)

Orig. Alt. Orig. Alt. No TPI DFT-TPI ANN-TPI

Orig. Alt.

arbiter 119 0.085 0.32 0.271 0.45 20.39 49.49 33.67 42.43
b15 84 0.052 0.19 0.061 0.23 79.34 87.45 83.27 85.16
b17 278 0.025 0.2 0.168 0.32 76.8 86.23 81.35 85.98
b18 821 0.048 0.17 0.142 0.33 80.76 89.97 82.51 86.78
b19 1251 0.046 0.26 0.048 0.35 77.49 91.45 89.19 90.48
b21 130 0.029 0.24 0.125 0.28 87.76 95.54 91.35 93.12
log2 249 0.03 0.09 0.149 0.14 85.43 88.52 86.67 88.72

memctrl 327 0.049 0.25 0.157 0.31 54.42 78.25 70.08 75.52
sin 47 0.091 0.31 0.095 0.37 94.26 98.96 95.24 96.21

s38584 135 0.052 0.25 0.059 0.32 96.41 98.87 97.53 97.45

+

voter, sin, and s38584; on these circuits, the random vector
fault coverage is at least, 2% lower than the ATPG-based fault
coverage.

2) ANN architecture and training: We prepare the ANN
model with input dimension of 101. We choose fan-in (N)/fan-
out cone (M nodes as explained in Section IV-B) for all the
netlists. All netlists are flattened and expanded with 2-input
gates as in [3]. The ANN has an input layer, a hidden layer
of 128 nodes and an output layer with a single node. We
use MSE as the loss function and use Adam optimizer for
model training. We use min-max normalization of the COP
values as a preprocessing step. We use the sigmoid function
as the activation function, as in [4]. We train the network for
100 epochs using k-fold cross-validation, using 8 netlists in
training, 1 netlist for validation, and 1 netlist for test.

3) ANN baseline performance: We report the performance
of the trained models in Table IV and Fig. 3, comparing
the fault coverage improvement of the ANN to the TPI
performed by the DFT tool using random test vectors. For a
fair comparison, we make sure that the number of test points
inserted are the same for both TPI mechanisms. The fault
coverage achieved using ANN based TPI on the benchmarks
is within 2-3% of the coverage using industrial DFT-based
TPI. We obtain the k-fold cross-validation error of the models
by averaging MSE on validation circuits and compare this to

0.55 0.60 0.65 0.70 0.75
Measured

 F.C. improvement(%) -->

0.2

0.4

0.6

0.8

1.0

Pr
ed

ic
te

d
 F

.C
. i

m
pr

ov
em

en
t(

%
)

--
> b15_synth_clean

(a)

0.1 0.2 0.3 0.4
Measured

 F.C. improvement(%) -->

0.2

0.3

0.4

0.5

0.6

0.7

Pr
ed

ic
te

d
 F

.C
. i

m
pr

ov
em

en
t(

%
)

--
> sin_synth_clean

(b)

Fig. 3. Scatter plot of fault coverage gain predicted by the ANNs

the MSE computed on querying the model with test circuits.
The cross-validation loss ranges from 0.025 to 0.091.

VI. EXPERIMENTAL ROBUSTNESS STUDY AND INSIGHTS

A. Investigation I: A Closer Look at Baseline Behavior

As shown in Table III and Table IV, the various baseline
models exhibit low F1 and MSE scores. At first sight, this
suggests that the models, trained on the publicly available
datasets, might not generalize well, and should thus lead to
poor performance in guiding TPI. However, the fault cov-
erage obtained by GCN and ANN-based TPI does improve
coverage over the baseline and the results are comparable to
the improved fault coverage from industrial DFT tool-based
TPI. This raises questions about the validity of conventional
ML metrics for assessing the quality of the models, at least
in terms of their likely usefulness in informing TPI. To seek
insights into this mismatch between ML metrics (accuracy, F1
score, MSE) and domain-specific test metrics (fault coverage
improvement, number of test points inserted), we now examine
the DL-based TPI in more detail.

1) Examining GCN-based TPI: Consider the GCN model
evaluated on netlists log2 and voter (Table III) where the
(Orig.) F1 scores are almost 0. While the GCN model’s output
differs from “true” labels set by the DFT tool, the attained
fault coverage is comparable (in fact, marginally better) to the
DFT-based approach. We make two key observations:

8

TABLE V
ANALYSIS OF GCN-BASED CLASSIFICATION. TPR: TRUE-POSITIVE RATE.

Circuits
GCN-based Test Point Insertion

TPR % of FP near FN F1 Score

1-hop 2-hop >2-hop Orig. 1-hop

b20 0.704 58 12 30 0.48 0.70
b22 0.721 55 8 37 0.48 0.67
log2 0.014 67 12 21 0.01 0.66

mem ctrl 0.144 52 22 26 0.14 0.60
voter 0 45 50 5 0.0 0.44
div 0.005 18 43 39 0.01 0.07

arbiter 0.058 41 22 37 0.08 0.33
b21 0.360 57 26 17 0.30 0.61
b17 0.150 62 11 27 0.10 0.47
b18 0.536 71 8 21 0.36 0.55

s38584 0.09 36 25 39 0.08 0.49

[LL,CC0,
CC1,CO]

[LL+1,CC1+1,
CC0+1,CO-1]

FAN-IN
CONE

FAN-OUT
CONE

Gk Gk'

Fig. 4. Many false +ves in the vicinity of nodes maybe classed as false -ves.

• Accuracy and F1 score for model evaluation is misleading
with respect to the model’s usefulness in the IC test
application. Even with low F1 scores, GCN-based TPI
was able to insert useful test points, where the coverage
boost is comparable to that achieved by the DFT tool.

• Most false-positive nodes classified by GCN are in 1- or
2-hop vicinity of true-positive and false-negative nodes.

In fact, we notice that where the GCN is “wrong” (i.e., it
misses a desirable test point location or adds a test point
somewhere else), most of the “incorrect” test points are within
the vicinity of the hard-to-observe nodes. We report the density
of false-positive (easy-to-observe classified as hard-to-observe)
nodes in the neighborhood of false-negatives (hard-to-observe
classified as easy-to-observe) in Table V.

Our experimentation reveals that over 60% of the GCN’s
false-positive classifications, on average, are within the 2-hop
neighborhood of hard-to-observe nodes. From Table V, we
observe that even though the F1 score of the model evaluated
on voter is 0, 95% of the false-positive insertions were near
the false-negative nodes. Adding test points where the GCN
suggests improves the coverage from 87.31% to 95.33%,
comparable with the coverage achieved by the DFT tool.

This suggests that the GCN is indeed learning some sense
of testability based on local neighborhood information (as rep-
resented by the aggregation of SCOAP values). Additionally,
while inspecting the TPI produced by GCN, we found that
the presence of certain gates in the netlist, like buffers and
inverters, do not impact testability measures and therefore, the
feature representation of neighboring nodes are quite similar.

Consider the example in Fig. 4. We can see that faults at
node Gk and Gk+1 are equivalent faults (here, test vectors

detecting stuck-at-0 at Gk will also detect stuck-at-1 at Gk+1

and vice versa); the DFT tool labels Gk as a “hard-to-
observe” node. Industrial DFT tools use fault collapsing to
merge equivalent faults, outputting nodes from the list of
collapsed faults which are “hard-to-observe”. Therefore, DFT
tools recommend inserting a test point at Gk. At present, the
GCN is not trained to identify equivalent faults. It classifies
both nodes as “hard-to-observe” since both nodes have similar
controllability and observability values and are in the vicinity.

Insights: In this setting, when a model achieves a high F1
score, we can surmise that the model has learned to approxi-
mate the heuristic of a DFT tool to identify “hard-to-observe”
nodes. Conversely, one might surmise that a model with a
low F1 score has poor classification ability and hence TPI
using such models yield negligible improvement in coverage.
However, our investigation reveals that even with low F1
scores, we get comparable fault coverage with respect to a
standard DFT tool. This is a conundrum: when training a set
of models, how can one gauge that a model is fit-for-purpose
without “trying it out” by employing costly fault-simulation
to ascertain its performance?

The mismatch stems from how the testability problem is cast
to a learning problem: identifying “hard-to-observe” nodes and
inserting test points to improve fault coverage are different
problems. While one can improve fault coverage by inserting
test points at “hard-to-observe” nodes, test points can be
inserted at other locations near “hard-to-observe” nodes to
get comparable or better fault coverage, compared to DFT
tools. There is a clear gap: the ML models are trained using
loss functions for a proxy objective (approximating the DFT
tool) not the primary objective (identifying the best test points
to improve fault coverage). The fact that a model appears to
perform poorly on the task for which it has been trained
should raise skepticism as to whether it will work “well” in
the broader problem.

If the F1 score is inadequate for evaluating a model, how
can one train and evaluate a model to better reflect the desired
goal? This is where domain expertise is useful. In this GCN-
based classification setting, we note that, during training, the
model should not be penalized for classifying a node as “hard-
to-observe” in the vicinity of the (true) “hard-to-observe”
nodes. Thus, one needs to devise a “closeness metric” which
reflects that a test point within the “vicinity” of the hard-to-
observe node can aid observability.

Exploring an alternative metric: We propose and inves-
tigate a new metric, the “1-hop F1 score” (Algorithm 1) and
tune the binary cross-entropy loss function for training:

Loss =
∑
x

y(x) logG(x) + (1− y(x)) log(1−G(x))

y(x) =

{
1, if x ∈ {hard-to-obs. ∪ 1-hop neighbor}
0, otherwise

We train the GCN model using our proposed loss function
and evaluate it using the 1-hop score. The results of these
alternative models are shown in Table III (Alt. columns) and
compared against the original models in Fig. 6. Our proposed

9

Algorithm 1: Relaxed 1-hop F1 score metric
Data: Netlist DAG N ; Training Data : X ∈ Rn×d, Y ∈ [0, 1]n,

Model parameters : θ, GCN model function : G(θ;x)
Result: Relaxed 1-hop F1 score
TP (N), FP (N), TN(N), FN(N)← 0;
for node i ∈ N do

if G(θ, xi) == 1 & yi == 1 then
TP (N)← TP (N) + 1

if G(θ, xi) == 0 & yi == 0 then
TN(N)← TN(N) + 1

if G(θ, xi) == 1 & yi == 0 then
i1−hop ←predecessor(i)

⋃
successor(i)

if ∃k s. t. k ∈ i1−hop & yk == 1 then
TN(N)← TN(N) + 1

else
FP (N)← FP (N) + 1

if G(θ, xi) == 0 & yi == 1 then
i1−hop ←predecessor(i)

⋃
successor(i)

if ∃k s. t. k ∈ i1−hop & G(θ, xk) == 1 then
TP (N)← TP (N) + 1

else
FN(N)← FN(N) + 1

Return F1 score based on computed confusion matrix.

b2
0

b2
2

lo
g2

m
em

_c
tr

l
vo

te
r

di
v

ar
bi

te
r

b2
1

b1
7

b1
8

s3
85

84

Benchmarks

0

50

100

%
 o

f s
am

pl
es

Neighbourhood of
 False-positives(FP)

1-hop
2-hop
> 2-hop

(a)

b2
0

b2
2

lo
g2

m
em

ct
rl

vo
te

r
di

v
ar

bi
te

r
b2

1
b1

7
b1

8
s3

85
84

Benchmarks

0.0

0.2

0.4

0.6

0.8

1.0

F1
 -

Sc
or

e

F1-score -
 Orig and 1-hop Models

Orig F1
1-hop F1

(b)

Fig. 5. (a) Percentage of false-positive nodes in the vicinity of false-negatives.
(b) Model performance trained using traditional metrics v/s “1-hop F1 score”.

metric better reflects the fault coverage improvement. During
cross-validation, practitioners can use the 1-hop F1 score to
select the best model. Furthermore, the 1-hop F1 score can
used as part of early stopping criteria for training the model.

2) Examining ANN-based TPI: There are no well-
established metrics to measure the “goodness-of-fit” for a

0 25 50 75 100
Epochs

0.00

0.25

0.50

0.75

1-
ho

p
F1

-s
co

re

GCN performance

Orig F1
1-hop F1

(a)

b2
0

b2
2

lo
g2

m
em

ct
rl

vo
te

r
di

v
ar

bi
te

r
b2

1
b1

7
b1

8
s3

85
84

Benchmarks

85

90

95

100

Co
ve

ra
ge

 (
%

)

Fault coverage
 using GCN-based TPI

No TPI
Orig
1-hop

(b)

Fig. 6. (a) Performance of GCN-based TPI models trained using traditional
metrics and ”1-hop” F1 score (b) Fault coverage using GCN-based TPI models
trained with traditional metrics and ”1-hop” F1 score.

non-linear regression model [38]. Instead, the MSE when
predicting with test data via k-fold cross-validation error on
training data is used as an indicator of model performance.
Comparable MSE across validation data and test data suggests
that a model fits well for the given data distribution and should
work well on real (unseen) data. However, studies [38] have
highlighted that a large MSE does not necessarily imply a bad
model, especially when the dataset has outliers. As in the GCN
case, ML metrics do not capture the whole story.

For instance, using the ANN-based approach, we obtain
fault coverage comparable to the DFT tool-based TPI, for
log2 and memctrl, despite the MSEs being almost 3× the
cross-validation loss. There is no correlation between the fault
coverage obtained by the ANN-based TPI and model’s MSE.
This raises a serious concern: one cannot be sure to pick the
“best” model using the MSE during cross-validation. There
lies a possibility that picking the model with lowest MSE from
cross-validation does not guarantee maximum fault coverage
improvement on test data.

Insights: Fault coverage improvement depends on how the
iterative TPI algorithm is guided by the predictions from the
ANN. For this TPI problem formulation, instead of analysing
the performance of the regression model using traditional
metrics, we find that rank correlation is a more useful metric
for evaluating the prediction quality. Consider a scenario where
one model, M exhibits no errors in its predictions for 90%
of the nodes while the other predictions have high errors. The
overall MSE of M may be lower than another, M′ whose
predictions, while imperfect, correctly reflect the relative or-
dering of the nodes in terms of their impact on improving
fault coverage. Even though the MSEs of the predicted scores
are higher forM′, the rank correlation between predicted and
actual fault coverage improvement from the candidate nodes
are close. In the iterative ANN-based TPI, M′ guidance can
provide higher fault coverage despite its higher MSE, as the
algorithm uses a rank-based approach to insert test points.

Exploring an alternative metric: We use the Spearman
Ranking Correlation Coefficient (φ) [39] to capture the cor-
relation between the candidate-node list obtained from the
ANN predicted fault coverage improvement and the actual im-
provement. This metric captures the monotonic improvement
of bi-variate rank order variables and measures the correlation,
where φ = +1 denotes perfect association of ranks and
φ = 0 denotes no correlation [39]. A “strong correlation”
(0.6 < φ < 1) suggests that the iterative TPI will insert test
points at nodes identified by ANN prediction in a rank order
akin to the top k locations obtained using fault-simulation. The
new loss function for the model is:

Lossrank−correlation = 1− φ(RFCP
,RFCA

)

where, φ(Spearman correlation) =
cov(RFCP

, RFCA
)

ρRFCP
ρRFCP

RFCP
denotes the rank order of the node based on fault

coverage improvement predicted by the ANN, RFCA
is the

rank order based on fault coverage improvement. Cov(.) and ρ
denote co-variance and standard deviation values respectively.
We train the ANN model using our proposed loss function and

10

0 500 1000 1500
Epochs -->

10 4

10 3

10 2

10 1

Lo
ss

 --
>

Training v/s Validation loss

train loss
c.v. loss

(a)
ar

bi
te

r
b1

5
b1

7
b1

8
b1

9
b2

1
lo

g2
m

em
ct

rl si
n

s3
85

84

Benchmarks

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
nk

 C
or

re
la

ti
on

Rank Correlation -
 MSE and RC models

MSE model
RC model

(b)

Fig. 7. (a) Training/validation loss while performing k-fold cross validation
to train ANN regressor. (b) Spearman Ranking Correlation for ANN- v/s fault
simulated top k rank locations with high fault coverage improvement.

0 500 1000 1500
Epochs

0.0

0.5

Ra
nk

Co

rr
el

at
io

n

ANN performance

MSE model
RC model

(a)

ar
bi

te
r

b1
5

b1
7

b1
8

b1
9

b2
1

lo
g2

m
em

ct
rl si
n

s3
85

84

Benchmarks

20

40

60

80

100

Co
ve

ra
ge

 (
%

)

Fault coverage
 using ANN-based TPI

No TPI
MSE
RC

(b)

Fig. 8. (a) Performance of models with loss function using mean squared error
(mse) and spearman rank correlation (rc) (b) Fault coverage using ANN-based
TPI models trained with MSE and rc.

illustrate the Spearman Correlation Coefficients for both ANN
models in Fig. 7. The model trained using rank correlation
shows better rank correlation values than the model trained
using MSE. In Fig. 8(a), we show that models trained with
the rank correlation metric achieve better rank correlation
compared to the MSE-based models in fewer training epochs,
indicating that our proposed loss function leads to better mod-
els for TPI. Furthermore, Fig. 8(b) shows that the alternative
model captures the likely fault coverage improvement better
than the MSE-based original models. These results are shown
in Table IV (Alt. columns). For comparing regression models
targeted towards TPI insertion, rank correlation offers better
insights and is more meaningful than MSE.

3) Discussion: From this investigation, it is clear that clas-
sical ML metrics and loss functions do not provide meaningful
measures of how a trained model will perform in the IC test
application; selecting models in the typical “ML” way is not a
robust approach. For the GCN-based approach, while “good”
classification scores suggest good approximations of industrial
DFT-based TPI, “bad” scores do not provide much information
on the quality of TPI. As DFT tools are heuristics-based, there
might be numerous, disjoint solution sets (i.e., lists of nodes
for TPI) which improve fault coverage. For the ANN-based
approach, the prediction inaccuracy (as indicated by MSE)
is less meaningful than the rank correlation. This raises the
question: are classical loss function and metrics adequate to
ascertain the effectiveness of a model in the context of IC

testability? Our findings suggest: no.

The 1-hop F1 score and the Spearman Correlation show a
better fit for exploring DL-based IC test problem formulations.
Moving forward, the community should identify domain-
informed metrics and standards to train and evaluate ML
models, rather than using and reporting traditional metrics. The
models should be trained and evaluated either directly on test-
based metrics (fault coverage, number of test-patterns), with
caveats well-explained, or use “tweaked” ML metrics which
capture effectiveness of the model in improving testability. We
encourage close scrutiny of models that appear to work “well”
in a solution but appear to perform “poorly” on the task for
which the model has been trained.

B. Investigation II: Probing the robustness of DL-based TPI

State-of-the-art DL-based TPI use approximate testability
measures as input features. We explore robustness of the
trained models, especially given that the approximate testa-
bility measures are unreliable in the presence of re-convergent
fan-outs and redundant circuit structures [31]. The motivation
for this is twofold: (1) robustness suggests that a model is
learning meaningful concepts and is better equipped to handle
“corner cases” and (2) fragility carries security concerns if
the model acts as a “drop-in” replacement for fault-simulation
(e.g., an adversary could sabotage the design by reducing fault
coverage if they can manipulate the ML-based TPI to omit test
points or provide an inflated estimate of testability).

To evaluate robustness, we devise a test using a Redun-
dant re-convergent fan-out pattern (RRF) pattern that, when
inserted, does not change functionality or testability. A ro-
bust model should be able to accommodate the pattern (as
DFT tools can). The RRF pattern is akin to a “semantically
meaningful perturbation” [11] as it perturbs the approximate
testability values in the neighborhood and fan-out cone.

While security is not a main focus of this work, one can
frame our investigation as seeing if an adversary can use
the RRF pattern to coax the model into overlooking nodes
that are “hard-to-observe” as a form of sabotage. A change
in functionality is too easily caught, so the RRF pattern
must somehow exploit the ML model so that it overestimates
testability. To design the pattern, we first observe that TPI near
the primary inputs/outputs are very rare. Thus, we design the
RRF so that the feature values resemble those of a primary
input’s neighborhood. Other “adversarial” patterns can be
designed using internal nodes of the netlist. Our evaluation
shows that the insertion of RRF patterns (∼5 gates) in a netlist
of ≥ 20,000 nodes does not change the parameters like path
delay, power consumed and area.

1) RRF Pattern Insertion: We start with a DAG of a
circuit—as in Fig. 9(a)—and use an internal node and a
primary input to create an RRF. We identify a node where
the trained DL model would normally insert a test point. To
create the RRF pattern, we choose the internal node G7 and

11

G7G7

G1

G2

G3

G4

G5

G6

G8

G9

G10

Target
Node for

Perturbation

G1

G2

G3

G4

G5

G6

G8

G9

G10

(a)

G3A1

G8

G1

G2

G3

G4

G5

G6

G7

G9

G10

G7'

RRF pattern
inserted in

DAG

A3

A2 A4

A5

(b)

Fig. 9. (a) G7 is chosen for perturbation. (b) DAG after RRF insertion.

primary input G3 (Fig. 9(a)). The output at G7′ is G7:

A1 = ¬G3 A2 = A1 ∧G7 A3 = G3 ∧G7
A4 = G3 ∨A2 A5 = A1 ∨A3 G7′ = A4 ∧A5
G7′ = (G3 ∨ ((¬G3) ∧G7)) ∧ (¬G3 ∨ (G3 ∧G7))

= (G3 ∨G7) ∧ (¬G3 ∨G7) = G7

To make this perturbation, any primary input can be con-
sidered. We create a set of RRF patterns (an example is
shown in Fig. 10). After RRF insertion, we use the DL
tool to analyze the netlist and see if it fails to insert a test
point at the node-under-attack. If the DL model is robust and
properly incorporates “neighborhood” knowledge (e.g., k-hop
neighbors for classification or the fan-in/out for regression),
these changes should be “ignored”.

Consider Fig. 10. Node G7 with SCOAP controllability
values (CC0,CC1). G3 has SCOAP values (1,1) as it is a
primary input. The SCOAP values of A2 and A3 become
(3,C1+3) and (2,C1+2) respectively as the 0-controllability
value is dominated by primary input and AND gates. Similarly,
at A4 and A5, we obtain SCOAP values of (5,2) and (5,3)
due to 1-controllability domination by primary inputs. Finally,
G7′’s SCOAP value is (6,6). Therefore, for any internal
node, introducing a redundant pattern changes the SCOAP
values to (6,6) without improving testability, since G7′ has
no contribution from a primary input. Fig. 9(b) represents
the modified DAG after insertion of an RRF pattern. DFT
tools identify the RRF pattern as redundant, and thus behave
appropriately by adding observation points as required.

2) Robustness of the GCN approach: We report GCN
classification performance on clean test circuits in Table VI. To
test robustness, we take a test circuit and create two variants.
The first variant (targeted) has RRF patterns at five random
hard-to-observe locations determined by the DFT tool. In
the second variant (random), the RRFs are inserted in five
random locations. For clean and variant circuits, we use DFT
tool-based and GCN-based TPI to find test point locations,
measuring and comparing the resulting fault coverage.

As shown in Fig. 11, TPI in netlists with RRF patterns
has reduced fault coverage. Inserting RRF patterns at the
(mispredicted) “hard-to-observe” nodes negligibly improves
the fault coverage over the original circuit. For RRF patterns
inserted at random locations, there is up to 50% degradation
in fault coverage compared to clean circuits. This degradation

A1 A2

A3

A4

A5

G7'G7

G3
(1,1)

(5,2)
(6,6)

(5,3)

(3,CC1+3)

(2,CC1+2)

(2,2)

(CC0,CC1)

(2,2)

(1,1)

Fig. 10. An Example Redundant Re-convergent Fanout (RRF) Pattern

TABLE VI
FAULT COVERAGE AFTER GCN-BASED TPI FOR CIRCUITS WITH/WITHOUT

RRFS. C: CLEAN, T: TARGETED VARIANT, R: RANDOM VARIANT

Circuit 1-hop F1 Fault Coverage (%) Improvement (δ%)

C T R C T R C T R

b20 0.72 0.46 0.59 98.97 96.78 97.34 2.95 0.76 1.32
b22 0.74 0.51 0.6 98.64 95.68 96.72 3.77 0.81 1.85
log2 0.65 0.42 0.56 93.88 87.04 89.51 8.62 1.78 4.25

mem ctrl 0.71 0.39 0.58 98.65 96.33 97.1 2.94 0.62 1.39
voter 0.77 0.36 0.52 95.35 89.36 90.53 8.04 2.05 3.22
div 0.71 0.29 0.35 99.52 99.33 99.42 0.21 0.02 0.11

arbiter 0.52 0.15 0.32 99.96 99.84 99.92 0.16 0.04 0.12
b21 0.72 0.31 0.5 99.89 99.39 99.56 0.61 0.11 0.28
b17 0.47 0.19 0.31 99.25 98.43 98.75 1.11 0.29 0.61
b18 0.58 0.19 0.39 99.75 99.42 99.6 0.51 0.18 0.36

s38584 0.57 0.29 0.41 98.5 98.31 98.39 0.31 0.12 0.2

occurs as “hard-to-observe” nodes in the neighborhood of the
RRF pattern are “missed” by the fragile DL model. RRF
patterns drastically drop the 1-hop F1 scores, pointing to a
reduction in TPIs near desirable nodes. From these results,
we find that the GCN-based approach is not robust.

3) Robustness of the ANN-based approach: We insert RRF
patterns randomly at < 1% of the locations in a netlist to
see if the ANN predictions are robust to these insertions. We
use DFT tool-based and ANN-based TPI to insert observation
points on clean and RRF pattern-inserted variants. We generate
10K random test patterns and measure fault coverage of the
circuits. From Fig. 12, the trends are in line with results of our
GCN investigation. The industrial DFT tool identifies redun-
dant logic sub-circuits. The coverage improvement reported by
applying 10K random vectors pre- and post-insertion of RRFs

b2
0

b2
2

log
2

mem
_ct

rl
vo

te
r

div

ar
bit

er b2
1

b1
7

b1
8

s3
85

84

Benchmarks

85

90

95

100

Co
ve

ra
ge

 (
%

)

Fault coverage of GCN based TPs
on RRF inserted netlists

No TPI
Clean
Random
Targeted

Fig. 11. ATPG fault coverage degradation post insertion of RRF patterns
using GCN-based TPI on our benchmark netlists.

12

TABLE VII
ANN-BASED TPI PERFORMANCE WITH RRF PATTERNS

Benchmarks Number
of TPs

DFT based TPI
fault coverage(%)

ANN based TPI
fault coverage(%)

clean perturbed clean perturbed

arbiter 119 49.49 49.49 42.43 28.47
b15 84 87.45 87.45 85.16 79.45
b17 278 86.23 86.23 85.98 80.46
b18 821 89.97 89.97 86.78 83.31
b19 1251 91.45 91.45 90.48 79.98
b21 130 95.54 95.54 93.12 91.18
log2 249 88.52 88.52 88.72 85.89

memctrl 327 78.25 78.25 75.52 62.42
sin 47 98.96 98.96 96.21 96.05

s38584 135 98.87 98.87 97.25 96.48

ar
bi

te
r

b1
5

b1
7

b1
8

b1
9

b2
1

lo
g2

m
em

ct
rl si
n

s3
85

84

Benchmarks

20

40

60

80

100

Co
ve

ra
ge

 (
%

)

Fault Coverage with
DfT tools TPs

No TPI
clean
perturbed

ar
bi

te
r

b1
5

b1
7

b1
8

b1
9

b2
1

lo
g2

m
em

ct
rl si
n

s3
85

84

Benchmarks

20

40

60

80

100

Co
ve

ra
ge

 (
%

)

Fault Coverage with
ANN based TPs

No TPI
clean
perturbed

Fig. 12. Fault coverage degradation using 10K random test-patterns post
insertion of RRF patterns using ANN-based TPI. Fault coverage on DFT
based TPI (left), ANN based TPI (right)

remains almost the same. In contrast, there is a drastic fall
in fault coverage improvement of the ANN-based TPI when
RRFs are present, as shown in Table VII. Clearly, the ANN-
based approach is also not robust.

VII. DISCUSSION

A. Further Insights into Robustness

In both problem settings, our trained models perform poorly
on netlists with RRF patterns. To improve robustness, we use
data augmentation and retraining by including RRF pattern-
added variants into the training data and training new models.
Table VIII reports the fault coverage improvement when per-
forming TPI with the new models. As can be seen in Fig. 13,
TPI with the new models results in better fault coverage.

The degradation of the fault coverage achieved following
DL-based TPI in the presence of RRFs provides interesting
avenues for exploration of robustness. In a sense, the RRFs
can be seen to exploit a structural bias, in that nodes near
primary inputs are generally “easier” to test; by manipulating
SCOAP values to resemble such nodes, we are able to confuse
the ML models. Thus, one should analyse circuits for structural
biases before training models and redress these in some way.
DL-based techniques often pick up inherent biases in training
data and perform poorly when such biases are absent in the
test data. Recent work [11], [40] demonstrates attacks on DL
models through “poisoning” the training dataset using mean-
ingful bias/patterns, pointing to proactive augmentation of the

TABLE VIII
FAULT COVERAGE AFTER GCN-BASED TPI (TRAINED WITH RRF

PATTERNS). C: CLEAN, T: TARGETED VARIANT, R: RANDOM VARIANT

Circuit 1-hop F1 Fault Coverage (%) Improvement (δ%)

C T R C T R C T R

b20 0.67 0.65 0.65 98.75 98.29 98.29 2.71 2.27 2.27
b22 0.69 0.67 0.68 98.33 98.19 98.19 3.46 3.32 3.32
log2 0.59 0.58 0.59 91.89 91.89 91.89 6.03 6.03 6.03

mem ctrl 0.68 0.64 0.65 98.32 98.14 98.14 2.61 2.43 2.43
voter 0.71 0.69 0.69 93.97 93.78 93.78 6.66 6.47 6.47
div 0.62 0.62 0.62 99.49 99.49 99.49 0.18 0.18 0.18

arbiter 0.52 0.52 0.52 99.96 99.96 99.96 0.16 0.16 0.16
b21 0.63 0.63 0.61 99.77 99.77 99.72 0.49 0.49 0.44
b17 0.44 0.44 0.4 99.2 99.2 99.15 1.06 1.06 1.01
b18 0.55 0.55 0.55 99.71 99.71 99.71 0.47 0.47 0.47

s38584 0.52 0.52 0.52 98.47 98.47 98.47 0.28 0.28 0.28

b2
0

b2
2

lo
g2

m
em

_c
tr

l
vo

te
r

di
v

ar
bi

te
r

b2
1

b1
7

b1
8

s3
85

84

Benchmarks

85

90

95

100

Co
ve

ra
ge

 (
%

)

Fault coverage
 on random RRF insertion

Clean
Robust

b2
0

b2
2

lo
g2

m
em

_c
tr

l
vo

te
r

di
v

ar
bi

te
r

b2
1

b1
7

b1
8

s3
85

84

Benchmarks

85

90

95

100

Co
ve

ra
ge

 (
%

)

Fault coverage
 on targeted RRF insertion

Clean
Robust

Fig. 13. Fault coverage obtained using TPI from clean network and adver-
sarially trained robust network post insertion of RRF patterns. Fault coverage
on randomly insertion in netlists(left), targeted insertion in netlists (right)

dataset, as in recent work [41]. However, more fundamentally,
the effectiveness of inserting RRF patterns shows that testabil-
ity metrics like SCOAP should be complemented with other,
reliable features, perhaps explicit structural features.

B. Insights into the Dataset

As shown in Section V, cross-validation of the GCN classi-
fiers resulted in wide-ranging F1 scores. To understand the
reasons behind this, we take a closer look at the dataset
distribution. Typically, a well trained model performs best on
data of the same distribution as that on which it was trained.
There are different ways in which on might consider circuits
to be “similar”, such as topological similarity or functional
similarity. There is no study which quantifies the distribution
of data-points sampled from the various netlists.

Given the role of SCOAP in the ML approaches we studied,
we plot statistical information to show the variation of node
characteristics within and across circuits in Fig. 14. CC1 and
CO vary by orders of magnitude across circuits. While log2
and div have similar SCOAP parameter distributions, they
are outliers relative to the others. The distribution of SCOAP
values for easy-to-observe and hard-to-observe nodes lies in
a similar range for all b-series circuits. When we examine the
models trained on the b-series circuits and tested on b-series,
the F1 score is higher than where the model was trained on
the b-series circuits and tested on the “outliers” (i.e., F1 scores
when testing on b-series circuits are in the range 0.1–0.48 and
when testing on outliers, ∼ 0). From this we can infer that the

13

lo
g2

m
em di

v
ar

bi
te

r
b2

1
b1

7
b1

8
s3

85
84b2
0

b2
2

Benchmark Circuits

100

101

102

103

104

105

1-
Co

nt
ro

lla
bi

lit
y

Variation of 1-Controllability
easy-to-observe
hard-to-observe

(a)
lo

g2
m

em di
v

ar
bi

te
r

b2
1

b1
7

b1
8

s3
85

84b2
0

b2
2

Benchmark Circuits

101

102

103

104

105

O
bs

er
va

bi
lit

y

Variation of Observability
easy-to-observe
hard-to-observe

(b)

vo
te

r
vo

te
r-s di

v
di

v-
s

ar
bi

te
r

ar
bi

te
r-s

s3
85

84
s3

85
84

-s
b2

2
b2

2-
s

Benchmark Circuits

100

101

102

103

104

105

106

1-
Co

nt
ro

lla
bi

lit
y

Variation of 1-Controllability
type

easy-to-observe
hard-to-observe

(c)

vo
te

r
vo

te
r-s di

v
di

v-
s

ar
bi

te
r

ar
bi

te
r-s

s3
85

84
s3

85
84

-s
b2

2
b2

2-
s

Benchmark Circuits

101

102

103

104

105

106

O
bs

er
va

bi
lit

y

Variation of Observability
type

easy-to-observe
hard-to-observe

(d)

Fig. 14. (a) Distribution of SCOAP 1-controllability, (b) Distribution of
observability, (c) Side-by-side plot of SCOAP-1 controllability with siblings
from [26] and (d) Side-by-side plot of observability with siblings from [26].

ML models perform better on “sibling” circuits with similar
node feature distributions.

Prior work [26] produces circuit variants of the ITC’99 and
EPFL benchmarks by randomly substituting gates. We plot
the feature distributions of each circuits alongside an example
“sibling” circuit in Fig. 14(c) and (d). As the node feature
distributions resemble the original circuits, we expect that
the ML models will perform similarly on the siblings. This
insight can guide practitioners to check if the distribution of
the training data resembles the test data.

C. Study Limitations

Our evaluation relies on labels obtained from a commercial
tool flow (Mentor Tessent ATPG tool, ABC logic synthesis
tool and Cadence technology library). The logic synthesis tool
plays a key role in determining the network structure and the
testability of various nodes. As in Ma et al.’s work [9], we use a
DFT tool’s outputs as the ground truth for classification. How-
ever, we note that different DFT tools will produce different
labels for nodes given the same circuit because different tools
use different heuristics to guide TPI. A motivation for adopting
ML-based approaches is the promise of achieving useful fault
coverage improvement while avoiding expensive simulation
costs. From a practicality standpoint, DFT tools provide an
adequate “gold standard” to emulate; ML-based TPI that
improves coverage at least as good as a DFT tool demonstrates
viability. The comparison of the ML-based approaches to
industrial DFT tools provide a useful empirical context for how
well ML-based approaches can work. As such, our findings
support the notion that ML can achieve comparable results to

industrial tools and achieve improved results after adopting
our proposed metrics. In reality, the truly “hard-to-observe”
nodes, as identified using fault-simulation might not be the
same as those determined as “hard-to-observe” by DFT tools.
This is why care should be taken to define exactly what an
ML model is trying to predict. In experiments, we report fault
coverage after TPI as measured by fault-simulation alongside
the other ML metrics to capture how the models perform,
noting that our chosen DFT tool is only one of many. Also,
hyper-parameter settings play a key role in the attainable
model quality2. While our experiments use GCNs and ANNs,
our insights into approximate testability measures and dataset
limitations extend to other ML approaches.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

From a critical exploration of the state-of-the-art in using
DL for IC test, we identified two areas that required fur-
ther investigation: metric robustness and model robustness.
We studied the behavior of trained GCN and ANN models
and found that existing ML-based evaluation metrics fail to
capture scenarios where a model’s outputs may be useful
for testing while ostensibly performing poorly in the task on
which the model was trained. We also found that robustness
of DL models is lacking, particularly under “adversarial”
settings with redundant circuitry able to cause the models
to predict poorly. Drawing from these insights, future work
includes deeper examination and evaluation of ML models
and investigations into design abstractions and features that
can complement or supplant approximate testability measures
like SCOAP as inputs for increased robustness as well as
comparisons of different models/architectures on common ob-
jectives/benchmarks. Ideally, the community should coordinate
an effort to create metrics to assess dataset quality alongside
open-sourcing implementations. Our work should not be taken
as a narrow critique of DL-based techniques for IC test, nor as
a general critique of ML. Instead, this work provides insights
that will assist advancements in this field.

ACKNOWLEDGEMENT

This work was supported in part in part by NSF grant #
1526405 and # 1801495, ONR grant # N00014-18-1-2058,
NSF career award and NYU/NYUAD CCS. B. Tan and R.
Karri are supported in part by ONR Award # N00014-18-1-
2058. S. Garg is supported in part by an NSF CAREER Award
and NSF Award # 1801495. R. Karri is supported in part by
the NYU/NYUAD CCS.

REFERENCES

[1] R. Pan, Z. Zhang, X. Li, K. Chakrabarty, and X. Gu, “Black-Box
Test-Coverage Analysis and Test-Cost Reduction Based on a Bayesian
Network Model,” in IEEE VLSI Test Symposium, 2019.

[2] H. Dhotre, S. Eggersglüß, K. Chakrabarty, and R. Drechsler, “Machine
Learning-based Prediction of Test Power,” in IEEE European Test
Symposium, 2019, pp. 1–6.

[3] Y. Sun and S. Millican, “Test Point Insertion Using Artificial Neural
Networks,” in IEEE Computer Society Symp. on VLSI, 2019.

2to aid reproducibility, we will release our implementation.

14

[4] S. K. Millican, Y. Sun, S. Roy, and V. D. Agrawal, “Applying Neural
Networks to Delay Fault Testing: Test Point Insertion and Random
Circuit Training,” in IEEE Asian Test Symposium, 2019.

[5] H. Yang, J. Su, Y. Zou, Y. Ma, B. Yu, and E. F. Y. Young, “Layout
Hotspot Detection With Feature Tensor Generation and Deep Biased
Learning,” IEEE Transactions on CAD., vol. 38, no. 6, pp. 1175–1187,
Jun. 2019.

[6] A. F. Tabrizi, N. K. Darav, L. Rakai, I. Bustany, A. Kennings, and L. Be-
hjat, “Eh?Predictor: A Deep Learning Framework to Identify Detailed
Routing Short Violations from a Placed Netlist,” IEEE Transactions on
CAD., pp. 1–1, 2019.

[7] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural networks, 1989.

[8] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. S. Dickstein, “On
the expressive power of deep neural networks,” in Int. Conf. on Machine
Learning, 2017, pp. 2847–2854.

[9] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu,
“High Performance Graph Convolutional Networks with Applications
in Testability Analysis,” in IEEE/ACM Design Automation Conference,
2019.

[10] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks
on deep learning models,” arXiv preprint arXiv:1707.08945, 2017.

[11] K. Liu, H. Yang, Y. Ma, B. Tan, B. Yu, E. F. Y. Young, R. Karri,
and S. Garg, “Adversarial Perturbation Attacks on ML-Based CAD:
A Case Study on CNN-Based Lithographic Hotspot Detection,” ACM
Trans. Des. Autom. Electron. Syst., vol. 25, no. 5, Aug. 2020.

[12] J. E. Nelson, W. C. Tam, and R. D. Blanton, “Automatic classification of
bridge defects,” in IEEE International Test Conference, 2010, pp. 1–10.

[13] Z. Li, J. E. Colburn, V. Pagalone, K. Narayanun, and K. Chakrabarty,
“Test-cost optimization in a scan-compression architecture using
support-vector regression,” in IEEE VLSI Test Symposium, 2017.

[14] L. R. Gómez, A. Cook, T. Indlekofer, S. Hellebrand, and H.-J. Wun-
derlich, “Adaptive bayesian diagnosis of intermittent faults,” Journal of
Electronic Testing, vol. 30, no. 5, pp. 527–540, 2014.

[15] N. Sumikawa, M. Nero, and L.-C. Wang, “Kernel based clustering for
quality improvement and excursion detection,” in IEEE International
Test Conference, 2017, pp. 1–10.

[16] C. Bishop, Pattern Recognition and Machine Learning, ser. Information
Science and Statistics. Springer-Verlag, 2006.

[17] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[18] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu, “Board-level functional
fault diagnosis using multikernel support vector machines and incre-
mental learning,” IEEE Transactions on CAD., 2014.

[19] M. Pradhan, B. B. Bhattacharya, K. Chakrabarty, and B. B. Bhat-
tacharya, “Predicting X-Sensitivity of Circuit-Inputs on Test-Coverage:
A Machine-Learning Approach,” IEEE Transactions on CAD., 2018.

[20] H.-G. Stratigopoulos, “Machine learning applications in ic testing,” in
IEEE European Test Symposium, 2018, pp. 1–10.

[21] M. Pradhan and B. B. Bhattacharya, “A survey of digital circuit testing
in the light of machine learning,” WIREs Data Mining and Knowledge
Discovery, vol. n/a, no. n/a, p. e1360.

[22] S. Jin, F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu, “Efficient Board-
Level Functional Fault Diagnosis With Missing Syndromes,” IEEE
Transactions on CAD., pp. 985–998, June 2016.

[23] S. Mittal and R. S. Blanton, “Learnx: A hybrid deterministic-statistical
defect diagnosis methodology,” in IEEE European Test Symposium,
2019, pp. 1–6.

[24] Y. Huang, B. Benware, R. Klingenberg, H. Tang, J. Dsouza, and W.-
T. Cheng, “Scan Chain Diagnosis Based on Unsupervised Machine
Learning,” IEEE Asian Test Symposium, pp. 225–230, 2017.

[25] A.-N. Spiess and N. Neumeyer, “An evaluation of r 2 as an inadequate
measure for nonlinear models in pharmacological and biochemical
research: a monte carlo approach,” BMC pharmacology, vol. 10, no. 1,
p. 6, 2010.

[26] M. N. Mondal, A. B. Chowdhury, M. Pradhan, S. Sur-Kolay, and B. B.
Bhattacharya, “Fault Coverage of a Test Set on Structure-Preserving
Siblings of a Circuit-Under-Test,” in IEEE Asian Test Symposium, 2019.

[27] F. Brglez, “On Testability Analysis of Combinational Networks,” in
IEEE Int. Symp. Circuits and Systems, 1984.

[28] L. H. Goldstein and E. L. Thigpen, “SCOAP: Sandia controllabil-
ity/observability analysis program,” in Design Automation Conf., 1980.

[29] H.-C. Tsai, C.-J. Lin, S. Bhawmik, and K.-T. Cheng, “A hybrid algorithm
for test point selection for scan-based bist,” in IEEE/ACM Design
Automation Conference, 1997, pp. 478–483.

[30] M. Bushnell and V. Agrawal, Essentials of electronic testing for digital,
memory and mixed-signal VLSI circuits. Springer, 2004, vol. 17.

[31] L. M. Huisman, “The reliability of approximate testability measures,”
IEEE Des. Test. Comput., 1988.

[32] J. Savir, “Good controllability and observability do not guarantee good
testability,” IEEE Transactions on Computers, vol. C-32, no. 12, pp.
1198–1200, 1983.

[33] D. Bryan, “The ISCAS’85 benchmark circuits and netlist format,” North
Carolina State University, vol. 25, p. 39, 1985.

[34] F. Brglez, D. Bryan, and K. Kozminski, “Notes on the ISCAS’89
Benchmark Circuits,” MCNC, 1989.

[35] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” IEEE Des. Test. Comput., 2000.

[36] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in Int. Workshop on Logic Synthesis, 2015.

[37] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Int. Conf. on Computer Aided Verification, 2010.

[38] P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier
detection. John wiley & sons, 2005, vol. 589.

[39] C. Spearman, “The proof and measurement of association between two
things.” 1961.

[40] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[41] K. Liu, B. Tan, G. R. Reddy, S. Garg, Y. Makris, and R. Karri, “Bias
Busters: Robustifying DL-based Lithographic Hotspot Detectors Against
Backdooring Attacks,” arXiv:2004.12492 [cs, stat], Apr. 2020.

Animesh Basak Chowdhury received his M.Tech.
in Computer Science from Indian Statistical Institute
in 2016. Currently, he is a doctoral candidate at
the NYU Centre for Cybersecurity. His research
interests include Secure Electronics Design Automa-
tion (EDA) and Deep Learning. Prior to joining the
Ph.D. program, he spent three years as a researcher
at Tata Research Development and Design Centre
(TRDDC), India.

Benjamin Tan (S’13-M’18) received the BE(Hons)
degree in Computer Systems Engineering, in 2014,
and the Ph.D. degree, in 2019, both from the Uni-
versity of Auckland. Since 2019, he has been a
Research Assistant Professor working in the NYU
Center for Cybersecurity, New York University, NY,
USA. His research interests include hardware se-
curity, electronic design automation, and machine
learning. He is a member of the IEEE and ACM.

Siddharth Garg received the B.Tech. degree in
electrical engineering from IIT Madras and the Ph.D.
degree in electrical and computer engineering from
Carnegie Mellon University, in 2009. He was an
Assistant Professor with the University of Water-
loo, from 2010 to 2014. In 2014, he joined New
York University (NYU) as an Assistant Professor.
His general research interest includes computer en-
gineering, more particularly secure, reliable, and
energy-efficient computing. He was a recipient of
the NSF CAREER Award, in 2015.
Ramesh Karri (SM’11-F’20) received the B.E.
degree in electrical and computer engineering from
Andhra University, Visakhapatnam, India, in 1985,
and the Ph.D. degree in computer science and engi-
neering from the University of California San Diego,
San Diego, CA, USA, in 1993. He is currently a
Professor of Electrical and Computer Engineering
with New York University (NYU), Brooklyn, NY,
USA. He co-directs the NYU Center for Cyber
Security. He has authored or coauthored more than
240 articles in leading journals and conference

proceedings. His current research interests include hardware cybersecurity
include trustworthy ICs; processors and cyberphysical systems; security-aware
computer-aided design, test, verification, validation, and reliability; nano meets
security; hardware security competitions, benchmarks and metrics; biochip
security; and additive manufacturing security.

