
FuCE: Fuzzing+Concolic Execution guided Trojan Detection in Synthesizable
Hardware Designs

MUKTA DEBNATH∗, Indian Statistical Institute, India

ANIMESH BASAK CHOWDHURY∗, New York University, USA

DEBASRI SAHA, A.K. Chowdhury School of IT,University of Calcutta, India

SUSMITA SUR-KOLAY, Indian Statistical Institute, India

High-level synthesis (HLS) is the next emerging trend for designing complex customized architectures for applications such as
Machine Learning, Video Processing. It provides a higher level of abstraction and freedom to hardware engineers to perform hardware
software co-design. However, it opens up a new gateway to attackers to insert hardware trojans. Such trojans are semantically more
meaningful and stealthy, compared to gate-level trojans and therefore are hard-to-detect using state-of-the-art gate-level trojan
detection techniques. Although recent works [19, 20] have proposed detection mechanisms to uncover such stealthy trojans in
high-level synthesis (HLS) designs, these techniques are either specially curated for existing trojan benchmarks or may run into
scalability issues for large designs. In this work, we leverage the power of greybox fuzzing combined with concolic execution to
explore deeper segments of design and uncover stealthy trojans. Experimental results show that our proposed framework is able to
automatically detect trojans faster with fewer test cases, while attaining notable branch coverage, without any manual pre-processing
analysis.

CCS Concepts: • Hardware→ High-level and register-transfer level synthesis; Hardware reliability; Test-pattern genera-
tion and fault simulation; Software tools for EDA; • Security and privacy→Malicious design modifications.

Additional Key Words and Phrases: Hardware Trojan, High-level Synthesis, Greybox fuzzing, Symbolic Execution

ACM Reference Format:
Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay. 2022. FuCE: Fuzzing+Concolic Execution guided
Trojan Detection in Synthesizable Hardware Designs. 1, 1 (January 2022), 23 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In recent times, hardware designers are increasingly using commercial-off-the-shelf (COTS) third-party intellectual
property (3PIP) for designing complex architectures [40]. For ease of automated design space exploration and functional
verification, designers are adopting HLS framework like SystemC, synthesizable C/C++. As the designs have become
increasingly more complex, chip designers build complex system-on-chips using 3PIPs of required functionalities and
integrate them in-house. Post integration, these system-on-chips are outsourced to off-shore fabrication facilities. This
typical chip design flow has enabled 3PIP vendors to maliciously inject stealthy bugs at a higher abstraction level
∗Equal contribution while at Indian Statistical Institute

Authors’ addresses: Mukta Debnath, mukta_t@isical.ac.in, Indian Statistical Institute, Kolkata, India; Animesh Basak Chowdhury, abc586@nyu.edu,
New York University, New York, USA; Debasri Saha, debasri_cu@yahoo.in, A.K. Chowdhury School of IT,University of Calcutta, Kolkata, India; Susmita
Sur-Kolay, ssk@isical.ac.in, Indian Statistical Institute, Kolkata, India.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM i

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ii Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

that can later be exploited by the attacker to cause malfunction. Thus, verifying the security aspects of such 3PIPs is
primarily important for the in-house integrator apart from ensuring correct functionality.

Hardware Trojans at high-level synthesized designs have been recently explored in [34], where the attacker injects
malicious functionality either by leaking crucial information or corrupt final output of design-under-test (DUT).
Although there exists a plethora of work to detect hardware trojans at register-transfer level (RTL) or gate-level designs,
these detection mechanisms are biased towards certain types of gate-level trojans. The trojans inserted at a higher
abstraction level are semantically meaningful and stealthy, but difficult for the defender to precisely detect any abnormal
functionality. An attacker can manifest a trojan by simply adding an RTL statement that uses hardware blocks designed
for other functionalities. This motivates performing security testing on high-level synthesized designs.

In this article, we propose a scalable trojan detection framework based on fuzzing and concolic execution (FuCE):
combines greybox fuzzing [39] and concolic execution [29] in a synergistic way to alleviate the downsides of those two
approaches in standalone mode. We show that prior state-of-the-art trojan detection works are heavily confined to the
type and functionality of trojans, and fail on subtly modified trojan behavior. Our primary contributions in this paper
are two-fold:

(1) a hybrid test generation approach combining the best of both worlds: greybox fuzzing and concolic testing — our
proposed framework complements both the techniques extenuating the problems associated with standalone
approaches;

(2) to the best of our knowledge, ours is the first work combining fuzzing with concolic testing to reach deeper
segments of HLS designs without hitting the scalability bottleneck.

The rest of the paper is organized as follows: Section 2 outlines the background and the prior related works in the
area of trojan detection. Section 3 describes the current limitations and challenges using state-of-art techniques. In
Section 4, we propose our FuCE framework and show the efficacy of results in Section 5. Section 6 presents an empirical
analysis of the results and concluding remarks appear in Section 7.

2 BACKGROUND

2.1 Overview of Hardware Trojan

For decades, the silicon chip was considered as the root-of-trust of a complex system. The assumption was that the
hardware blocks and modules are trustworthy and functions are exactly as specified in the design documentation.
However, at the turn of this millennium, researchers have extended the attack surface to the underlying hardware,
and showed that it can be tampered to gain privileged information and/or launch denial-of-service attacks. This has
disrupted the root-of-trust assumption placed on hardware. The core philosophy of hardware trojan is to insert a
malicious logic in the design and bypass the functionality verification of the design. The malicious logic is activated by
the attacker’s designed input. Since the last decade, hardware trojan design and detection have been extensively studied
in the field of hardware security. Security researchers have proposed numerous trojan threat models and novel ways of
detecting them. In [37], the authors have shown hardware trojans can be inserted in various levels of the chip design
life-cycle. Thus, security testing of a design becomes extremely important before being passed on to the next stage.

2.2 Threat model

We have outlined our threat model in Figure 1. We assume in-house designers and engineers are trusted entities who
are primarily responsible for developing complex system-on-chip (SoC) modules. A number of third-party hardware
Manuscript submitted to ACM

FuCE: Fuzzing+Concolic Testing iii

Hardware
IP 1

Hardware
IP N

Integrated SoC/
Hardware IP

(Verilog/
SystemC)

Golden model
(C++/Matlab

simulink)

Vulnerability
Detection

Framework

SoC/IP
integrator

Verification and
Validation engineer

Hardware
IP 2

I/P

O/P

ResponseQuery

Third party IP
vendors

(Untrusted)

In-house
Designers
(Trusted)

Fig. 1. Threat model showing untrusted third-party IPs are used for developing customized complex system-on-chip modules

IPs are procured from third-party vendors for developing such complex SoC design. However, 3PIPs are untrusted (not
developed in-house) and may have hidden backdoors and vulnerabilities. Therefore, it is important for the in-house
designers to locate the presence of malicious functionalities in such 3PIPs. For validation purpose, we assume that the
in-house designers have access to functionally correct cycle accurate behavioural model of the SoC design (in the form
of C++/Simulink model). Our threat model is in line with several earlier works such as [19, 20].

2.3 Security Testing

In the software community, security testing is one of the mandated steps adopted by the practitioners to analyze and
predict the behaviour of the system with unforeseen inputs. This has helped develop robust software that are immune
against a variety of attacks like buffer-overflow [12], divide by zero [8], arithmetic overflow [17]. We describe next two
well-known security testing methodologies that are widely used for the same:

2.3.1 Greybox fuzzing. Fuzz testing is a well known technique in software domain for detecting bugs. Greybox
fuzzing [39] involves instrumenting the code segments at the point-of-interest, and generate interesting test vectors
using evolutionary algorithms. Instrumentation injects markers in the design code which post compilation and execution
can track whether a test-case has reached the marker location. A fitness function is used in order to evaluate the quality
of a test-vector. Typically, greybox fuzzing is used to improve branch-pair coverage [39] of the design, therefore the
codes are annotated at every basic block. A test-vector is regarded as interesting, if it reaches a previously unexplored
basic block, or hits it for a unique number of times. The fuzz engine maintains a history-table for every basic block
covered so far, and retains interesting test vectors for further mutation/crossover. The test generation process completes
once the user-defined coverage goal is achieved. There exists a plethora of works [10, 31, 36] that have improved the
performance of greybox fuzzing by augmenting various program analysis techniques. Popular coverage-guided greybox
fuzzing (CGF) engine like American fuzzy lop (AFL) [39] have been able to detect countless hidden vulnerabilities in
well-tested softwares.

2.3.2 Concolic Testing. Concolic testing [29] is a scalable way of performing symbolic execution on a program with
certain inputs considered concrete, and the rest are symbolic inputs. Symbolic execution in general suffers from
scalability issues since the number of path constraints generated, are exponential in terms of the number of conditional
statements. In order to avoid costly computations, concolic execution executes the program along the path dictated by

Manuscript submitted to ACM

iv Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

concrete input and fork execution at branch points. The path constraints generated in concolic execution have reduced
the number of clauses and variables, thereby making it easier for solvers and can penetrate deep into complex program
checks. Driller [31] and symbolic executer (S2E) [9] are examples of engines adopting this approach.

2.4 Testing for Hardware Trojan detection

Testing based trojan detection is a well studied problem in the recent past. In earlier works [4, 5, 7, 15, 28], authors have
assumed that the trojan netlist contain a rare logic value and/or switching activity at certain nodes. Therefore, the test
generation was tuned to excite such nodes in a netlist. Later, researchers used concolic testing approaches to detect
trojans in behavioural level RTL designs [2, 3, 13, 24]. The objective of performing concolic testing is to penetrate into
deeper conditional statements of a HDL program to expose the trojan behaviour. Although the techniques seem to work
well on trojan benchmarks [30], employing concolic testing without an efficient search heuristic and a target of interest
to cover, results in multiple SAT solver calls taking considerable time for test vector generation. With recent success of
coverage-guided greybox fuzzing in software domain, it has been recently adopted in [16, 19, 32] for detecting trojans
in hardware design. Concolic test generation for trojan detection in high level designs have only been proposed recently
in [20, 21]. We summarize works related to ours in Table 1.

Table 1. Works on Test-based Trojan Detection in Hardware designs

Work Abstraction level Technique used Benchmarks Golden-model available?

Chakraborty et al. [7] Gate level Guided ATPG ISCAS85, ISCAS89 ✓

Banga et al. [4] Gate level Novel DFT ISCAS89 ✓

Saha et al. [28] Gate level Genetic algorithm + SAT formulation ISCAS85, ISCAS89 ✓

Chowdhury et al. [5] Gate level ATPG binning + SAT formulation ISCAS85, ISCAS89, ITC99 ✓

Huang et al. [15] Gate level Guided ATPG ISCAS85, ISCAS89 ✓

Liu et al. [25] Gate level Genetic algorithm + SMT formulation TrustHub [33] ✓

Ahmed et al. [3] Register transfer level Concolic testing TrustHub [33] ✓

Ahmed et al. [2] Register transfer level Greedy concolic testing TrustHub [33] ✓

Cruz et al. [13] Register transfer level ATPG + Model checking TrustHub [33] ✓

Liu et al. [24] Register transfer level Parallelism + concolic testing TrustHub [33] ✓

Pan et al. [27] Register transfer level Reinforcement learning TrustHub [33] ✓

Le et al. [19] HLS/SystemC Guided greybox fuzzing S3C [34] ✓

Bin et al. [20] HLS/SystemC Selective symbolic execution S3C [34] ✓

FuCE (Ours) HLS/SystemC Greybox fuzzing + Concolic Execution S3C [34] ✓

2.5 Trojan detection in high-level design

With high level synthesis becoming the new trend for designing customized hardware accelerators, only few works [26,
34] have studied hardware trojan and security vulnerabilities in HLS designs and proposed preliminary countermeasures
to detect them. In prior work[19], Trojan inserted in high-level design is called synthesizable hardware Trojan (SHT) as
it gets manifested as malicious backdoor in the hardware design. Therefore, the problem of Trojan detection in low
level RTL design can be appropriately abstracted as finding SHT in high-level design. Till date, [19] and [20] have
systematically addressed the problem of Trojan detection in HLS designs. In [19], the authors have tuned the software
fuzzer AFL [39] for S3C Trojan benchmark characteristics and showed that their technique outperforms the vanilla AFL.
The modified AFL called AFL-SHT (AFL-SHT), introduces program-aware mutation strategy to generate meaningful
test vectors. In [20], the authors identify the additional overhead of concolic testing from usage of software libraries, and
Manuscript submitted to ACM

FuCE: Fuzzing+Concolic Testing v

have restricted the search space within the conditional statements of design. They named their automated prototype as
SCT-HTD (SCT-HTD), based on S2E [9]. In the next section, we focus on studying the Trojan characteristic embedded
in high-level synthesized design and evaluate the efficacy of existing detection techniques.

3 LIMITATIONS AND CHALLENGES

We present our motivating case-study on a real-time finite state machine implementation. We use a system controller
design mimicking a typical hardware functionality and highlight limitations of existing techniques to discover the
trojan behavior.

3.1 Motivating case-study

Listing 1. Motivating example

1 int controller(int stateA , int stateB)

2 {

3 unsigned long long cycle=0,input = 101 ;

4 bool switchA = FALSE;

5
6 stateA += input ; stateB -=input ;

7 if(stateA != 23978 || stateB != 5687)

8 exit (0) ;

9
10 while(input){

11 if(stateA == 23978 && stateB == 5678 && switchA == FALSE) // Branch 1

12 {

13 switchA = TRUE ; cycle++ ;

14 swap(stateA ,stateB) ;

15 if(cycle >= 2^20 -1) // Trojan

16 {

17 switchA = FALSE ;

18 swap(stateA ,stateB) ;

19 }

20 }

21 else if(switchA == TRUE) // Branch 2

22 {

23 stateA += 100 ; stateB -= 100 ;

24 if(stateA == 23978 && stateB == 5678) // Branch 3

25 switchA = FALSE ;

26 }

27 scanf("\n%d",input) ;

28 }

29 }

In Listing 1, we have a code-snippet of a typical controller accepting state information stateA and stateB. The
controller first checks if the stateA and stateB are set to the values 23978 and 5678, respectively (line 7). Once the
guard condition is satisfied, it enters a while loop, and check for the values of stateA, stateB and switchA. The loop
traversed for the first time, satisfies 𝐵𝑟𝑎𝑛𝑐ℎ 1 (line 11) and swaps the values of stateA and stateB, setting switchA to
TRUE. In subsequent iterations, 𝐵𝑟𝑎𝑛𝑐ℎ 2 is always satisfied as switchA = TRUE (line 21), resulting in updating the
values of stateA and stateB. It also checks whether stateA and stateB have reached the pre-defined values (line 24).

Manuscript submitted to ACM

vi Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

Cycle
<220-1

StateA = 5678;
StateB = 23978;

Cycle++

INPUT

Cycle>220-1

StateA++;
StateB-- ;

StateA ==
23978 &&
StateB ==

5678

!(StateA == 23978 && StateB == 5678)

StateA = 23978;
StateB = 5678;

Clean execution

Trojan execution

Fig. 2. State-transition diagram of motivating example [1]

If so, then switchA is set to FALSE. At the end, the controller accepts an input from the user for performing further
action.

We insert a Trojan code at line 15 where we compare the current value of cycle with a very large number. The
attacker intends to skip the functionality of Branch 2, and provide a false impression to the user that the controller
is working by accepting inputs, however skipping Branch 2 and not performing any operations. We explain it with
the help of a state-transition diagram in Figure 2. Here, we observe that as soon as the cycle reaches the value of
220 − 1, switchA is maliciously set to FALSE and the values of stateA and stateB are swapped instead of the expected
updates in Branch 2. Thus, the loop body repeatedly executes Branch 1 and maliciously increments cycle after accepting
input from the user. The Trojan resembles closely to the “ticking time-bomb" or “sequential Trojan" behaviour where
the system malfunctions after running for sufficiently large number of cycles. From test and verification perspective,
simulating the design for large number of cycles in an exhaustive manner is a hard problem.

3.2 Evaluating AFL-SHT on this example

Le et al.[19] envisioned hardware trojans in high-level SystemC designs as Synthesizable Hardware Trojan (SHT). They
proposed fuzzing-based test generation AFL-SHT using AFL as the backend engine. Initially, the authors evaluated the
trojan detection capability of vanilla AFL on S3C benchmarks and identified the pitfalls of AFL in detecting SHT. They
presented three major modifications in the mutation block of fuzz-engine: 1) pump mutation 2) format-aware trimming,
and 3) design-aware interesting number generation to tune test-generation for trojan detection.

We evaluated our motivating example with the authors’ version of AFL-SHT and found that it was unable to generate
appropriate values of input, stateA and stateB to activate the trojan behaviour. We observe that in-spite of aiding the
fuzz-engine with coarse-grain information about the interesting numbers, it was unable to explore beyond line 7. This
clearly shows the incapability of customized fuzz engine to generate stateA= 23978 and stateB= 5678 and satisfy the
branch constraints. Similarly, we modified the trigger conditions of trojans in S3C benchmarks and found that AFL-SHT
was unable to detect trojans while the performance were slightly better than vanilla AFL. This indicates AFL-SHT
is unable to utilize the pump mutation and using interesting numbers from benchmarks in an effective manner. We
Manuscript submitted to ACM

FuCE: Fuzzing+Concolic Testing vii

conclude our evaluation of AFL-SHT with a simple takeaway message: fuzzing needs additional aid to explore code
segments guarded by complex conditional checks.

3.3 Evaluating SCT-HTD on this example

A growing body of work in high-level synthesized designs have led to renewed interest in concolic testing for Sys-
temC [20–22]. Recent work SCT-HTD [20] has proposed a scalable, selective and systematic exploration approach for
concolic testing of SystemC designs to uncover stealthy trojans. The authors identified a crucial insight that concolic
engine do not distinguish in-built between library codes and design codes, and therefore gets stuck in exploration
of undesirable library codes. The underlying assumption is: library codes and pragmas are maintained by SystemC
specifications and therefore are trusted elements. Thus, exploring different paths in library codes does not hold much
relevance and hence the authors have selectively restricted the state-space exploration within the design code. Addi-
tionally, while exploring the state-space, they prioritize states hitting uncovered conditions compared to states having
already explored conditions. The authors have evaluated their approach on S3C benchmarks and showed improvement
in terms of number of inputs generated for trojan detection.

A direct advantage of using concolic based approach for test-generation is systematic exploration of state-space. It
maintains a history of states previously visited and prioritize the bandwidth towards exploring complex conditional
checks. We run selective concolic engine (re-implementing the concepts of SCT-HTD) and run it on our motivating
example. We discovered that SCT-HTD failed to trigger the Trojan condition particularly because of two reasons: 1)
SCT-HTD forked two states for every iteration of the while loop and soon running into out of memory on a machine
having 16 GB RAM, 2) SCT-HTD repeatedly invokes SAT-engine to generate test-input for satisfying the condition at
line 11 when the condition at line 21 is True. On a high-level, it shows that concolic engines require an additional aid
for intelligent exploration of search space leaving less memory footprint.

3.4 Lessons learnt

Post evaluation of state-of-art techniques of trojan detection, we conclude that the challenges lying ahead involves
two important issues: 1) detecting trojans in a faster and scalable manner, and 2) detecting extremely "hard-to-trigger"
trojan logic. As a defender, one can never make a prior assumption about possible location of trojans and tune the
Testing methodology in a particular way. For a defender, the confidence of a design being “Trojan-free" can only come
when a test-set is generated providing a sufficient coverage on the design. Our evaluation with fuzzing and concolic
testing shows that they can be combined in a synergistic way to accelerate trojan detection. This can avoid the path
explosion problem of symbolic execution by controlled forking in symbolic loops using the fuzzer-generated test cases,
thereby reaching deeper code segments without generating lots of states.

Combining the two mainstream techniques for security testing, FuCE can achieve high code coverage with faster
Trojan detection ability. FuCE avoids getting stuck either in Fuzz testing or in symbolic execution. FuCE can avoid the
path explosion problem of symbolic execution to a certain extend, by controlled forking in symbolic loops using the
fuzzer-generated test cases. So it can reach deeper code areas without generating lots of states.

4 FUCE FRAMEWORK

We present the workflow of FuCE in Figure 3. The FuCE framework consists of three components: 1) Greybox fuzzing,
2) Concolic execution, and 3) Trojan detector.

Manuscript submitted to ACM

viii Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

 Initial
Test-cases

(Tinitial)

Priortize
Test-cases

of TFuCE

Program
execution

Mutation &
Crossover

Coverage
Improv-

ed?

Fuzz Engine

NoDiscard
testcase

1) Update
TFuCE

2) Reset
timecov.

3) Call HT
detector

Update
DUT

execTree

Locate Uncover-
ed Conditions

Path predicate
generation (Pc)

Constraint
solving using SAT

1) Update TFuCE

2) Call HT detector

Test-cases
TFuCE

Program
P

Concolic Engine

timecut-off,

timebudget ,

timethreshold

Exit No

timeconcolic

 > timebudget?

Exit
Yes

timecov. >
timethreshold?

Invoke
Concolic
engine

Yes

No

Output mismatch?
Trojan

Detected

Hardware Trojan Detector

Invoke
Fuzz

engine.

No Yes

Program
executable

Outputreference

New
test-case

Executable
generation

LLVM bitcode
generation

Lightweight
Instrumention

FuCE test generation framework

Pre-processing

Pre-
processing

Fuzz1 Concolic1 Fuzz2 Fuzzi Concolic i Fuzzi+1

time >
timecut-off

Testcases
TFuCE

Yes

Yes

TFuCE = Tinitial

Fig. 3. FuCE test generation framework. Fuzz engine is fed with initial test-cases. As coverage improvement ceases in fuzz engine,
Concolic engine starts execution with fuzz generated test cases. Fuzz engine and Concolic engine execute sequentially to penetrate
deep into hard-to-satisfy conditional checks of programs. The Trojan Detector checks for trojan whenever FuCE generates a new

test-case.

4.1 Greybox Fuzzing by AFL

High-level synthesized designs predominantly written in SystemC/C++ are initially passed through static analysis tool
LLVM [23] backend to generate intermediate representation (IR). The LLVM generated IRs are fed to afl-clang-fast,
which is based on clang [11], a front end compiler for programming languages like C, C++, SystemC, among others.

afl-clang-fast performs code instrumentation by automated injection of control flow statements on every condi-
tional statement in run time, and generates executable. The core insight is: Trojan logic must be embedded under one
of the conditional statements, so covering all conditional statements while verification and testing provides sufficient
confidence of triggering the Trojan logic. The instrumented executable is then fed to our greybox fuzz-engine AFL
along with an initial test-set (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙) for fuzz testing.

In algorithm 1, we outline the overall flow of Greybox fuzzing. At first, we provide the high-level DUT and a
user-provided test-set 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to the fuzzing framework. The CALCULATE-ENERGY function assigns energy to the
initial seed 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 on the basis of external features of the test case like the execution time, bitmap coverage, depth
of the test case in terms of fuzzing hierarchy. A test case that is fast, covers more branches and has more depth, is
given more energy. AFL then decides the number of random fuzzing iterations for that test case. AFL uses 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙
Manuscript submitted to ACM

FuCE: Fuzzing+Concolic Testing ix

Algorithm 1: FUZZER(𝐷𝑈𝑇 , 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
Data: Design Under Test 𝐷𝑈𝑇 , User provided test-inputs 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , User defined time bound 𝑡𝑖𝑚𝑒𝑐𝑢𝑡−𝑜 𝑓 𝑓
Result: 𝑇𝑓 𝑢𝑧𝑧𝑒𝑑 ⊲ Interesting test-inputs queue
𝑇𝑓 𝑢𝑧𝑧𝑒𝑑 ← 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ⊲ Initialization of the AFL’s test-inputs queue
while time ≤ 𝑡𝑖𝑚𝑒𝑐𝑢𝑡−𝑜 𝑓 𝑓 do

for 𝜏 ∈ 𝑇𝑓 𝑢𝑧𝑧𝑒𝑑 do
⊲ Mutate 𝜏 to generate test-cases based on the energy parameter

𝐾 ← CALCULATE_ENERGY(𝜏)
for 𝑖 ∈ {1, 2, . . . , 𝐾} do

𝜏 ′ ←MUTATE-SEED(𝜏) ⊲ 𝜏 ′ denotes the mutated test case
if IS-INTERESTING(𝐷𝑈𝑇, 𝜏 ′) then

𝑇𝑓 𝑢𝑧𝑧𝑒𝑑 ← 𝑇𝑓 𝑢𝑧𝑧𝑒𝑑 ∪ 𝜏 ′ ⊲ 𝜏 ′ is interesting if it improves branch coverage
end

end
end

end
return 𝑇𝑓 𝑢𝑧𝑧𝑒𝑑

to perform operations like deterministic mutations and havoc mutations to generate newer test-cases with the help
of the MUTATE-SEED function. The deterministic mutation stage scans each byte of test-case and mutates them to
generate new test-case. This includes bit flipping, byte flipping, arithmetic increments and decrements and magic value
substitution. The number of children test-cases generated loosely depends on the size of the original test-case. However,
havoc mutation performs aggressive mutations like mutating bit/bytes values at random location with a random value,
deleting or cloning sub-sequence for generating new test-cases. AFL uses branch-pair as a fitness metric to determine
the quality of test-input. For each branch-pair, AFL maintains a hash-table entry the number of times it is hit. The
IS-INTERESTING function checks whether the mutated test case is interesting or not. AFL considers a test-input to be
interesting, if it covers a new-branch pair not hit so far, or has hit a branch-pair unique number of times compared to
past observations. Interesting test-inputs are retained to form the next candidates for fuzzing. The algorithm terminates
when either no more interesting test cases can be found or the user-defined 𝑡𝑖𝑚𝑒𝑐𝑢𝑡−𝑜 𝑓 𝑓 expires. AFL maintains all
interesting test-inputs in the queue 𝑇𝑓 𝑢𝑧𝑧𝑒𝑑 .

4.2 Concolic Execution by S2E

In our work, we use S2E as our concolic execution engine for test-generation. S2E has two main components: 1) a
concolic virtual machine based on QEMU [6] and 2) a symbolic execution engine based on KLEE to switch back and
forth between concrete execution and symbolic execution. We provide it the high level design DUT and a set of test-
cases 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . The CONC-EXEC execute the DUT with all test-cases 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 generating concrete execution traces. S2E
maintains an execution tree 𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 and identifies all the true and/or false edges of conditional nodes which are
not covered by𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . S2E then assigns symbolic values to those predicates. The COND-PREDICATE constructs the path
constraints for the uncovered edge of a condition, forks a new thread and invokes SAT-solver (CONSTRAINT-SOLVER)
to generate the test-case. S2E selects the path for exploration in depth-first search order, based on its coverage analyzer
and heuristically selects the path that maximizes the coverage. So, the final test-cases reported by S2E ideally should
cover all conditions of 𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 . We outline this approach in algorithm 2.

Manuscript submitted to ACM

x Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

Algorithm 2: CONCOL-EXEC(𝐷𝑈𝑇 ,𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
Data: Design Under Test 𝐷𝑈𝑇 , User provided test-inputs 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙
Result: 𝑇𝑐𝑜𝑛𝑐𝑜𝑙𝑖𝑐 ⊲ Set of test-cases generated by the concolic engine
𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 ← 𝜙 ⊲ Execution tree for DUT
for 𝜏 ∈ 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 do

⊲ Update DUT’s execution tree with path traces obtained from concrete execution of initial test inputs
𝑃𝑡𝑟𝑎𝑐𝑒 ← CONC-EXEC(𝐷𝑈𝑇 ,𝜏)
𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 ← 𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 ∪ 𝑃𝑡𝑟𝑎𝑐𝑒

end
for uncovered cond 𝑐 ∈ 𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 do

⊲ Perform symbolic execution steps targeting uncovered conditional statements
𝑝𝑐 ← COND-PREDICATE(𝑐)
𝑡𝑛𝑒𝑤 ← CONSTRAINT-SOLVER(𝑝𝑐) ⊲ 𝑡𝑛𝑒𝑤 is newly generated test-case by the concolic engine
𝑇𝑐𝑜𝑛𝑐𝑜𝑙𝑖𝑐 ← 𝑇𝑐𝑜𝑛𝑐𝑜𝑙𝑖𝑐 ∪ 𝑡𝑛𝑒𝑤

end
return 𝑇𝑐𝑜𝑛𝑐𝑜𝑙𝑖𝑐

4.3 Fusing fuzzer with concolic execution (FuCE)

We leverage the power of concolic execution to alleviate the drawbacks of greybox fuzzing without hitting a scalability
bottleneck. As shown in Figure 3, we first perform lightweight instrumentation on all conditional statements of DUT
and generate an instrumented executable. We start our fuzz-engine (FUZZER) with a set of initial test-cases 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 .
The fuzz-engine generates interesting test-cases using genetic algorithm and explores various paths in the design.
When there is no coverage improvement and a user-defined time period 𝑡𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is over, the concolic engine
(CONCOL-EXEC) is invoked for unseen path exploration. The concrete execution function of the concolic engine
generates the 𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 for the DUT by feeding the fuzzer generated test cases. The CONCOL-EXEC identifies
uncovered conditions in𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 and forks new threads for symbolic execution on such conditions using depth-first
search strategy. We use fuzzed test-cases for concolic engine to generate new test-cases satisfying complex conditional
statements. In order to avoid scalability bottleneck, we limit the runtime of concolic engine to 𝑡𝑖𝑚𝑒𝑏𝑢𝑑𝑔𝑒𝑡 . Concolic
execution generated test-cases are then fed back to the fuzzer, thereby allowing scalable exploration of deeper program
segments. This process continues till trojan is detected, which is the main objective of FuCE. Whenever a new test case
is generated with either the fuzz engine or the concolic engine, it is added to 𝑇𝐹𝑢𝐶𝐸 , the test case queue for FuCE, and
the trojan detector is invoked with the latest test case added to 𝑇𝐹𝑢𝐶𝐸 . If trojan is detected successfully, FuCE displays
the result for trojan detection and stops. We formally present our test-generation approach in algorithm 3.

There may be designs where trojans get detected before 100% branch coverage is obtained. For related goals of either
generating test-cases for achieving 100% branch coverage or trojan dertection in the absence of a golden model, we can
run FuCE for a pre-defined 𝑡𝑖𝑚𝑒𝑐𝑢𝑡−𝑜 𝑓 𝑓 using a similar flow of switching between the fuzzer and the concolic engine
as in Figure 3. Instead of checking for trojan detection, we check for complete branch coverage for the design and stop
FuCE on attaining 100% branch coverage or on time out.

4.4 Hardware Trojan Detection

Using FuCE test generation framework, we localize trojans in a given 𝐷𝑈𝑇 (algorithm 4). For every test-case FuCE
generated either by FUZZER or CONCOL-EXEC, we run our design, collect the output response and compare it with
reference response. The SIMULATOR invokes the SystemC library that provides predefined structures and simulation
Manuscript submitted to ACM

FuCE: Fuzzing+Concolic Testing xi

Algorithm 3: FuCE (𝐷𝑈𝑇 , 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 𝑡𝑖𝑚𝑒𝑐𝑢𝑡−𝑜 𝑓 𝑓 , 𝑡𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑡𝑖𝑚𝑒𝑏𝑢𝑑𝑔𝑒𝑡)

Data: Design Under Test (𝐷𝑈𝑇), Initial test-inputs (𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙), Time limit (𝑡𝑖𝑚𝑒𝑐𝑢𝑡−𝑜 𝑓 𝑓), Threshold time limit for
coverage improvement by Fuzzer (𝑡𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑), Time budget allocated for concolic execution
(𝑡𝑖𝑚𝑒𝑏𝑢𝑑𝑔𝑒𝑡)

Result: 𝑇𝐹𝑢𝐶𝐸 ⊲ Final test-cases generated by FuCE
⊲ InvokeConcolic performs concolic execution with fuzzing generated test-inputs

Function InvokeConcolic(𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 ,𝑖):
𝑡𝑖𝑚𝑒𝑐𝑜𝑛𝑐𝑜𝑙𝑖𝑐 ← 0 ⊲ Monitor concolic execution runtime
for uncovered cond 𝑐 ∈ 𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 do

𝑝𝑐 ← COND-PREDICATE(𝑐)
𝑡𝑛𝑒𝑤 ← CONSTRAINT-SOLVER(𝑝𝑐) ⊲ 𝑡𝑛𝑒𝑤 is a newly generated test case
𝑇𝐹𝑢𝐶𝐸 ← 𝑇𝐹𝑢𝐶𝐸 ∪ 𝑡𝑛𝑒𝑤
Invoke Trojan detector with 𝑡𝑛𝑒𝑤 (algorithm 4)
if 𝑡𝑖𝑚𝑒𝑐𝑜𝑛𝑐𝑜𝑙𝑖𝑐 > 𝑡𝑖𝑚𝑒𝑏𝑢𝑑𝑔𝑒𝑡 then

break
end

end
𝑖 ← 1 ⊲ Phase ID of sequential execution
𝑇𝐹𝑢𝐶𝐸 ← 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ⊲ FuCE gets initial test-cases 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑡𝑖𝑚𝑒𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ← 0 ⊲ 𝑡𝑖𝑚𝑒𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 monitors time elapsed since last test-case retained

⊲ 𝑡𝑖𝑚𝑒 denotes wall time of FuCE
while time ≤ 𝑡𝑖𝑚𝑒𝑐𝑢𝑡−𝑜 𝑓 𝑓 do

for 𝜏 ∈ 𝑇𝐹𝑢𝐶𝐸 do
𝐾 ← CALCULATE_ENERGY(𝜏) ⊲ Mutate 𝜏 to generate test-cases based on the energy parameter
for 𝑗 ∈ {1, 2, . . . , 𝐾} do

𝜏 ′ ←MUTATE-SEED(𝜏) ⊲ 𝜏 ′ denotes the mutated test case
if IS-INTERESTING(𝐷𝑈𝑇, 𝜏 ′) then

𝑇𝐹𝑢𝐶𝐸 ← 𝑇𝐹𝑢𝐶𝐸 ∪ 𝜏 ′
Invoke Trojan detector with 𝜏 ′ (algorithm 4)
Reset 𝑡𝑖𝑚𝑒𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒

end
if 𝑡𝑖𝑚𝑒𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 > 𝑡𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

InvokeConcolic(𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 , 𝑖) ⊲ Invokes the concolic engine when the fuzzer gets stuck
(𝐷𝑈𝑇𝑒𝑥𝑒𝑐𝑇𝑟𝑒𝑒 is the program execution tree of 𝐷𝑈𝑇)
if time > 𝑡𝑖𝑚𝑒𝑐𝑢𝑡−𝑜 𝑓 𝑓 then

return 𝑇𝐹𝑢𝐶𝐸 ⊲ User defined total time budget for FuCE is exhausted
end
else

𝑖 = 𝑖 + 1
break

end
end

end
end

end
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐹𝑢𝐶𝐸 = reportCoverage(𝑇𝐹𝑢𝐶𝐸) ⊲ Reports code coverage
return (𝑇𝐹𝑢𝐶𝐸 , 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐹𝑢𝐶𝐸)

Manuscript submitted to ACM

xii Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

Algorithm 4: HT-DETECTOR (𝐷𝑈𝑇 , 𝑂𝑢𝑡𝑔𝑜𝑙𝑑𝑒𝑛, 𝑡)

Data: 𝐷𝑈𝑇 is Device Under Test, 𝑂𝑢𝑡𝑔𝑜𝑙𝑑𝑒𝑛 is golden model output), 𝑡 is the new test-case of FuCE
𝑜𝑢𝑡𝑟𝑒 𝑓 ← 𝑂𝑢𝑡𝑔𝑜𝑙𝑑𝑒𝑛 (𝑡)
𝑜𝑢𝑡𝐷𝑈𝑇 ← 𝑆𝐼𝑀𝑈𝐿𝐴𝑇𝑂𝑅(𝐷𝑈𝑇, 𝑡)
if 𝑜𝑢𝑡𝐷𝑈𝑇 ≠ 𝑜𝑢𝑡𝑟𝑒 𝑓 then

Trojan detected
break

end
𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐹𝑢𝐶𝐸 = reportCoverage(𝑇𝐹𝑢𝐶𝐸) ⊲ Reports code coverage
return (𝑇𝐹𝑢𝐶𝐸 , 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐹𝑢𝐶𝐸)

kernel for simulation of SystemC designs. The assumption is: any deviation of 𝐷𝑈𝑇 ’s output (eg., bit corruption at
certain locations or report of internal state information) from expected response is considered to be suspicious in nature
and triggered from possible trojan behaviour. FuCE terminates as soon as a trojan behaviour is detected, otherwise at a
user-defined time-out 𝑡𝑖𝑚𝑒𝑐𝑢𝑡−𝑜 𝑓 𝑓 and reports coverage metrics using the test-cases generated.

4.5 Evaluating FuCE on our motivating example

We evaluated FuCE on our motivating example to check the efficacy of our proposed framework. Our fuzzer quickly
generated a considerable number of test-cases for stateA and stateB but was unable to explore beyond line 7. The
test-cases generated by fuzzer were passed on to concolic engine. Concolic engine generated values of stateA and
stateB satisfying the condition at line 7. These newly generated test-cases were fed back to the fuzzer leading to faster
exploration of the entire loop body. We observed that the fuzzer preserved the test-cases which covered the loop body a
unique number of times. Finally, FuCE reached the Trojan location within 560s±15%, whereas neither AFL-SHT nor
SCT-HTD could detect it within two hours of run.

5 EXPERIMENTAL SETUP AND DESIGN

5.1 Experimental setup

We implement FuCE using state-of-art software testing tools: AFL (v2.52b) [39] for greybox fuzzing and S2E [9] to
perform concolic execution. For robust coverage measurements, we cross-validated our results using a combination of
coverage measuring tools: namely afl-cov-0.6.1 [1], lcov-1.13 [18], and gcov-7.5.0 [14]. Experiments are performed on
64-bit linux machine having 𝑖5 processor and 16 GB RAM clocked at 3.20 GHz.

5.2 Benchmark characteristics

We evaluated FuCE on the SystemC benchmark suite, 𝑆3𝐶𝐵𝑒𝑛𝑐ℎ [35] having SystemC Trojan-infected designs. The
Trojans have a wide spectrum of purpose ranging across: Denial-of-service, Information leakage, and corrupted
functionality. The types of trojan based on their triggered mechanism are categorized in Table 2. For the trojan type
where the payload has memory, the trojan remains active for a prolonged period of time even when the trigger condition
is not active anymore. We define the severity level based on this characteristic. The 𝑆3𝐶𝐵𝑒𝑛𝑐ℎ is synthesizable to RTL
using any commercial High Level Synthesis (HLS) tool. Table 3 shows the characterization of the S3C benchmark both
for the original circuit, and the trojan induced circuit.

The benchmarks considered have diverse characterization: 1) Image and signal processing: ADPCM, 2) Cryptography:
AES, 3) Data manipulation: Bubble sort, 4) Filters: Decimation, and 5) IP protocols: UART. The trojans in S3CBench are
Manuscript submitted to ACM

FuCE: Fuzzing+Concolic Testing xiii

Table 2. Trojan types — Combinational: Comb., Sequential: Seq.

Trojan Trigger Payload Severity

CWOM Comb. Comb. Low
CWM Comb. Seq. High
SWOM Seq. Comb. Low
SWM Seq. Seq. High

hard to detect with random seeds [34]. The benchmark suite provides certain test-cases having high statement coverage
but does not trigger the trojan behaviour. Two benchmarks in S3C suite, namely sobel and disparity that accept image as
file input, were not considered because the concolic engine was unable to generate test-cases with these input formats.
However, we present our results on the largest benchmark AES-cwom, and on the most complex benchmark of the 𝑆3𝐶
suite, i.e.,interpolation-cwom, which indeed demonstrates the efficacy of our approach.

5.3 Design of experiments

We perform two variants of experiments to evaluate the efficacy of FuCE: 1) Trojan detection 2) Achievable branch
coverage. We compare the results with standardized baseline techniques namely fuzz-testing based approach(AFL) and
symbolic model checking(S2E). We now describe the experimental setup of each baseline:

Baseline 1 (Fuzz testing): We run AFL on S3C benchmarks using default algorithmic setting. Initial seed inputs are
randomly generated.

Baseline 2 (Symbolic execution): Like baseline 1, we run S2E on S3C benchmarks having default configurations.
Randomly generated seed inputs are provided to S2E as inputs.

FuCE: We run FuCE on S3C benchmarks using randomly generated input testcases. We set 𝑡𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 5s and
𝑡𝑖𝑚𝑒𝑏𝑢𝑑𝑔𝑒𝑡 = 1800s for our experiments as per FuCE (algorithm 3). These are user defined configurable parameters.

We evaluate FuCE with our baseline test generation techniques on two dimension: 1) Trojan detection capability 2)
Branch coverage achievable during a pre-defined time limit. The first objective assumes availability of input-output
response pairs from golden model to check Trojans functionally corrupted the design. However, the second objective
aims to study the efficacy of test generation framework to achieve complete branch coverage on the design. Test-cases
covering all conditional statements in the design enhance defenders’ confidence of capturing any anomalous behaviour
in the absence of golden model. For both experimental settings, we present case-studies demonstrating the effectiveness
of FuCE on S3C benchmarks. For apples-to-apples comparison with prior state-of-art approaches [19, 20], we compare
the results of Trojan detection as reported in their published works.

6 EMPIRICAL ANALYSIS

6.1 Trojan detection

We first analyze trojan detection capability of FuCE on S3C benchmarks. Since FuCE invokes fuzzing and concolic
engine interchangeably, we term each fuzzing phase as 𝑓 𝑢𝑧𝑧𝑛 and concolic execution phase as 𝑐𝑜𝑛𝑐𝑛 ; where 𝑛 denotes
phase ID in FuCE execution. For example, a trojan detected in phase 𝑓 𝑢𝑧𝑧3 implies that the framework has gone through
test generation phases 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1-𝑓 𝑢𝑧𝑧2-𝑐𝑜𝑛𝑐2-𝑓 𝑢𝑧𝑧3 before detecting the Trojan.

We evaluated Trojan detection capability of FuCE on S3C benchmarks since it is the state-of-art trojan infected
high-level designs. We reported the results in Table 4 and 5. Table 4 shows testcase generated and runtime of each

Manuscript submitted to ACM

xiv Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

Table 3. HLS synthesized hardware characterization of S3C benchmarks. Trojan types: CWOM, SWM and SWOM

Benchmark Type SystemC characterization HLS synthesized hardware

Branches Lines Functions LUTs Registers Nets Critical path(ns)

ADPCM
orig 26 186 6 121 87 346 3.94
SWM 28 186 6 120 118 394 3.801
SWOM 30 187 6 163 240 588 3.019

AES orig 50 371 13 2782 4684 8809 7.589
CWOM 68 380 13 2886 4772 9039 7.668

Bubble_sort
orig 20 78 3 472 551 1219 8.944

CWOM 22 78 3 494 551 1219 7.527
SWM 22 78 3 546 584 1400 7.87

Filter_FIR orig 14 75 2 68 36 146 5.729
CWOM 16 75 4 89 59 213 7.46

Interpolation orig 10 108 3 984 654 212 7.45
CWOM 30 108 3 1071 595 212 8.331
SWM 30 108 3 612 570 212 8.321
SWOM 30 109 3 612 569 212 8.321

Decimation orig 88 304 3 3018 1696 634 8.702
SWM 94 304 3 3108 1741 634 8.702

Kasumi orig 36 288 12 1378 956 188 8.016
SWM 38 288 12 1385 958 272 8.016
CWOM 38 288 12 1431 987 273 9.266

UART orig 28 160 3 510 142 1336 3.137
SWM-1 48 164 3 549 196 1336 2.766
SWM-2 50 164 3 566 190 13.36 4.367

execution phase of FuCE. We compare branch coverage obtained by FuCE with AFL and S2E in Table 4. In Table 5, we
report the total time taken, the number of testcases generated for Trojan detection and memory usage of FuCE and
compare these with our baseline techniques (AFL and S2E) as well as with the state-of-art test-based Trojan detection
approaches [19, 20]. We set a timeout of two hours for trojan detection using each technique.
1) Coverage obtained till Trojan detection:We report the branch coverage results of FuCE in Table 4. We present
the number of test-cases and the time taken by FuCE in each execution phase before Trojan detection. One important
point to note: FuCE could detect all the Trojans in S3C benchmarks within 𝑐𝑜𝑛𝑐1 execution phase. The designs for
which AFL standalone can detect the trojan in 𝑓 𝑢𝑧𝑧1 phase only, we do not invoke 𝑐𝑜𝑛𝑐1 phase. We present the branch
coverage obtained by FuCE and baseline techniques until Trojan detection (or, reaching pre-defined timeout limit).

Comparison with baselines: We compare the branch coverage obtained by FuCE and baseline techniques in Table 4
and observe that FuCE outperforms baseline techniques in terms of Trojan detection capability and coverage achieved
till Trojan detection. For ADPCM, FuCE could detect the trojan in 𝑓 𝑢𝑧𝑧1 phase itself. It is observed that AFL and FuCE
perform similarly in trojan detection for ADPCM. S2E on the other hand detects trojan with little better coverage but
takes longer time. Timing comparison is shown in Table 5. For AES, FuCE goes through the phases 𝑓 𝑢𝑧𝑧1 and 𝑐𝑜𝑛𝑐1 to
Manuscript submitted to ACM

FuCE: Fuzzing+Concolic Testing xv

Table 4. Trojan Detection by FuCE. Trojan types: CWOM, SWM and SWOM. Detection: Yes (✓), No (✗)

Benchmarks Testcases Time(in s) Branch cov. (%)

𝑓 𝑢𝑧𝑧1 𝑐𝑜𝑛𝑐1 𝑓 𝑢𝑧𝑧1 𝑐𝑜𝑛𝑐1 AFL S2E FuCE

ADPCM 3 - 38 - 88.1(✓) 88.9(✓) 88.1(✓)
6 - 15 - 85.7(✓) 86.1(✓) 85.7(✓)

AES 4 1 43 4 93.8(✓) 81.5(✗) 94.9(✓)

Bubble_sort 4 8 19 192 95.5(✗) 95.5(✗) 100(✓)
3 3 19 124 95.5(✗) 95.5(✗) 100(✓)

Filter_FIR 4 2 11 13 93.8(✓) 93.8(✓) 93.8(✓)

Interpolation
63 4 11 38 45.1(✗) 46(✗) 76.1(✓)
3 - 4 - 57.5(✓) 56.1(✓) 57.5(✓)
3 - 4 - 57.5(✓) 56.1(✓) 57.5(✓)

Decimation 4 - 24 - 66.7(✓) 66.7(✓) 69.1(✓)

Kasumi 23 - 5 - 87.5(✓) 84.3(✓) 87.5(✓)
22 - 5 - 87.5(✓) 84.3(✓) 87.5(✓)

UART-1 6 3 34 234 85.7(✓) 81.2(✗) 88.5(✓)
UART-2 2 2 32 242 79.4(✓) 88.3(✓) 88.3(✓)

detect trojan with better coverage than AFL and S2E. AFL could not detect the trojan without violating the threshold
time allocated for it to check for test inputs generated that hit new branch in the design. So, FuCE shifts from 𝑓 𝑢𝑧𝑧1

phase to 𝑐𝑜𝑛𝑐1 phase thus detecting trojan in less time than AFL alone. For benchmarks AES, Bubble_sort, Filter_FIR,
Interpolation and UART, FuCE invokes 𝑐𝑜𝑛𝑐1 indicating fuzz engine was stuck at 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Similarly, S2E could not
detect all the Trojans in user-defined time limit indicating concolic execution is a slow process because of timing
overhead from expensive SAT calls of concolic engine. An important advantage of using fuzzing alongside concolic
execution is automatic identification of variable states which are responsible for complex checking operations. This
effectively reduces the burden on concolic engine to categorise the variables between symbolic and concrete before
invoking it. In the next subsection, we outline case-studies on S3C benchmarks describing how FuCE alleviates the
challenges coming from standalone techniques to explore design state-space without hitting scalability bottleneck.

2) Analyzing timing improvement: In our work, we compare wall-time for trojan detection of FuCE with baseline
and state-of-art techniques. The reason is that the fuzz engine takes less cpu-time for a given wall-time as it is an IO
intensive process, whereas a concolic engine takes more cpu-time for a given wall-time as it forks multiple threads for
test generation. For a fair comparison across a range of techniques, we choose wall-time as a metric to compare with
previous works. The wall-time taken for trojan detection is presented in Table 5 (Column 3). TO indicates trojan is not
detected within the wall-time limit of two hours.

Comparison with baselines: From Table 5, we conclude that FuCE takes less time than vanilla AFL for half of the
benchmark designs considered and outperforms S2E on all the designs except on Decimation. FuCE avoids expensive
path exploration by concolic execution using fuzzer generated seeds leading to faster and scalable Trojan detection.

Manuscript submitted to ACM

xvi Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

Table 5. Comparing Trojan detection using FuCE with prior works [19, 20]. Trojan: CWOM, SWM and SWOM.

Benchmarks
Test-cases generated Wall-time taken (s) Memory footprint(MB)

AFL AFL-
SHT S2E

SCT-
HTD FuCE AFL AFL-

SHT S2E SCT-
HTD FuCE S2E SCT-

HTD FuCE

ADPCM 3 423 14 27 3 38 1.17 55 157 38 3029 3546 51.44
6 414 23 7 6 15 1.67 49 31 15 3433 1341 51.53

AES 7 22 2 11 5 337 0.04 TO 23 47 9879 1386 1051

Bubble_sort 30 39 160 2 12 TO 4.82 TO 8 211 4761 1074 2698
12 108 32 4 6 TO 337.36 TO 10 143 4759 1106 2618

Filter_FIR 11 41 5 26 6 1184 0.07 41 13 24 640 1071 480

Interpolation
63 2325402 72 - 67 TO TO TO - 49 16244 - 3081
3 47 8 - 3 4 0.16 130 - 4 8790 - 56.20
3 47 2 - 3 4 0.16 14 - 4 3326 - 56.21

Decimation 4 - 2 - 4 22 - 12 - 24 723 - 55.57

Kasumi 23 316 76 - 23 5 1.32 245 - 5 2908 - 53.29
22 414 49 - 22 5 1.32 83 - 5 2976 - 53.28

UART-1 7 51 15 3 9 311 0.18 TO 9 268 5929 1071 3164
UART-2 4 - 2 3 4 298 - 730 9 274 2651 1070 2618

Comparison with state-of-art approaches:We reached out to the authors of [19, 20] to obtain the test generation
frameworks for independent evaluation and apples-to-apples comparison with FuCE. However, the actual implementa-
tions were unavailable. Thus, we compared the timing as reported in their papers and used similar computing platform
for our experiments. We found FuCE took longer time than AFL-SHT except for two cases: interpolation-cwom and
bubble_sort-swm; where FuCE detects the trojan in 49s and 243s respectively. In these two cases, AFL-SHT either took
longer time or timed out. This exhibits fundamental limitation of fuzzing even though that fuzz engine is heavily
customized based on benchmark characteristics. FuCE on the other hand can easily identify the state of fuzz engine
getting stuck and invoke concolic engine to penetrate into deeper program state. In a subsequent section, we will
elaborately describe Trojan behaviour in S3C benchmarks and FuCE’s ability to detect these. FuCE detected Trojans
quicker than SCT-HTD for ADPCM, Interpolation, Decimation and Kasumi because SCT-HTD took longer time to solve
computationally intensive operations to generate the testcases.

3) Analyzing test-case quality: As listed in Table 5 (Column 2), FuCE leverages S2E with fuzz generated test-cases
to accelerate the coverage over a defined period of time. The fuzzer generated input seeds guide the symbolic engine
to construct the execution tree along the execution path triggered by existing test-cases and generate new test cases
reaching unexplored conditional statements. For a fair comparison with FuCE, we report the number of test-cases
preserved by each technique until it reaches user-defined timeout (or, till Trojan detection).

Comparison with baselines: Compared to AFL and S2E, the number of test-cases generated until Trojan detection are
comparable for all benchmarks. A closer analysis reveals that the number of testcases generated by FuCE is same as AFL
for the cases where AFL as standalone was sufficient in detecting the Trojans without getting stuck for 𝑡𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .
But, for cases where AFL crossed the 𝑡𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to generate a new testcase that improves coverage, FuCE invoked
concolic engine for generating qualitative test-cases quickly. Finally, FuCE was able to detect Trojan using fewer
Manuscript submitted to ACM

FuCE: Fuzzing+Concolic Testing xvii

test-cases than both AFL and S2E. This indicates that FuCE uses the time-budget judiciously for creating effective
test-cases that explore deeper program segments when fuzzing is stuck.

Comparison with state-of-art approaches: We compared the number of test-cases generated via state-of-art ap-
proaches with FuCE. FuCE outperforms SCT-HTD for designs like ADPCM, AES and Filter-FIR by generating fewer
test-cases. Although SCT-HTD is better than FuCE in terms of generating effective test-cases for designs like Bubble-sort
and UART, we will explore in subsequent sections that this heavily depends on the exploration strategy selected by
concolic engine to explore the search space. Due to unavailability of branch coverage by SCT-HTD till Trojan detection,
it is difficult to conclude whether SCT-HTD generated fewer test-cases with better coverage, or explored Trojan location
quickly and terminated before achieving substantial coverage on the rest of the design.

4) Analyzing memory footprint: The last column of Table 5 reports memory usage denoting maximum memory
footprint . We observe that trojans are detected with reasonable memory usage by FuCE. We compare it with concolic
execution engine S2E and SCT-HTD reported in [20]. AFL is an input-output (IO) bound process whereas S2E is memory
intensive program allocating huge memory for an application to run on a virtual machine. For AFL and AFL-SHT, we
used default configuration of 50MB memory which was sufficient for all the S3C benchmarks. From the results, one
can interpret that fuzzing combined with concolic execution has 50% less memory footprint(average) compared to
standalone concolic execution.

6.2 Coverage Improvement

For analyzing the effectiveness of FuCE framework, we measure the branch coverage obtained by running the baseline
techniques and FuCE with a time-limit of two hours. Figure 4 and Table 6 study the detailed coverage analysis over the
entire time period for FuCE and baseline techniques.

From the coverage data (Figure 4), we can categorize S3C benchmarks into two types from testing perspective: simple
and complex. For simple designs having small number of nested conditional statements, FuCE could achieve 100%
coverage within a short span of time with fewer test-cases. These are: Bubble-sort and Kasumi. Complex benchmarks
have deeper levels of nested loop and conditional statements along with ternary operations. These are: ADPCM and
Interpolation. FuCE achieved 100% branch coverage on all S3C benchmarks except UART, AES, Filter_FIR and Decimation.
We dig deeper into the coverage analysis for which FuCE could not achieve 100% coverage and discovered an interesting
observation: presence of unreachable branch conditions in the original benchmark designs. We analytically found
uncovered branch conditions from our experiments and verified that no test-case is possible for covering these code
segments. We believe that these unreachable code segments will be optimized out during RTL level synthesis and
therefore is not a drawback of FuCE test generation framework.

6.3 Case Studies

Here, we dive deep into FuCE’s performance on four S3CBench designs across two orthogonal directions: 1) Trojan
detection capability and 2) achievable branch coverage within a defined time limit.

1) Case Study I: Trojan Detection
Interpolation is a 4-stage interpolation filter. We consider CWOM trojan variant for our case study. Only FuCE could

successfully detect the trojan amongst every other state-of-art technique (Table 5). We show CWOM trojan variant of
Manuscript submitted to ACM

xviii Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

1 10 100 1,000 10,000

0

20

40

60

80

100

Time(s)

C
ov

er
ag

e
(%
)

FuCE
S2E
AFL

(a) adpcm-swm

1 10 100 1,000 10,000

0
10
20
30
40
50
60
70
80
90
100

Time(s)

C
ov

er
ag

e
(%
)

FuCE
S2E
AFL

(b) aes-cwom

1 10 100 1,000 10,000

0

20

40

60

80

100

Time(s)

C
ov

er
ag

e
(%
)

FuCE
S2E
AFL

(c) bubble-cwom

1 10 100 1,000 10,000

0
10
20
30
40
50
60
70
80
90
100

Time(s)

C
ov

er
ag

e
(%
)

FuCE
S2E
AFL

(d) filter-FIR-cwom

1 10 100 1,000 10,000

0

20

40

60

80

100

Time(s)

C
ov

er
ag

e
(%
) FuCE

S2E
AFL

(e) interpolation-cwom

1 10 100 1,000 10,000
65

70

75

80

85

90

95

Time(s)

C
ov

er
ag

e
(%
)

FuCE
S2E
AFL

(f) decimation-swm

1 10 100 1,000 10,000

0

20

40

60

80

100

Time(s)

C
ov

er
ag

e
(%
)

FuCE
S2E
AFL

(g) kasumi-cwom

1 10 100 1,000 10,000

0
10
20
30
40
50
60
70
80
90

Time(s)

C
ov

er
ag

e
(%
)

FuCE
S2E
AFL

(h) uart-swm1

Fig. 4. Branch coverage obtained on S3C benchmarks after running FuCE, S2E and AFL for two hours

Manuscript submitted to ACM

FuCE: Fuzzing+Concolic Testing xix

Table 6. Coverage improvement by FuCE. Trojan types: CWOM, SWM and SWOM.

Benchmarks #Testcases generated Time(in s) Phases Branch cov. (%)
𝑓 𝑢𝑧𝑧1 𝑐𝑜𝑛𝑐1 𝑓 𝑢𝑧𝑧2 𝑓 𝑢𝑧𝑧1 𝑐𝑜𝑛𝑐1 𝑓 𝑢𝑧𝑧2

ADPCM 3 39 3 43 1800 1940 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1-𝑓 𝑢𝑧𝑧2 100
6 82 4 20 1800 1640 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1-𝑓 𝑢𝑧𝑧2 100

AES 4 1 - 43 4 - 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1 94.9

Bubble_sort 4 8 - 19 192 - 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1 100
3 3 - 19 124 - 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1 100

Filter_FIR 4 2 - 13 11 - 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1 93.8

Interpolation
63 460 55 11 1800 3880 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1-𝑓 𝑢𝑧𝑧2 100
3 1427 28 9 270 2217 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1-𝑓 𝑢𝑧𝑧2 100
3 663 51 9 270 3640 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1-𝑓 𝑢𝑧𝑧2 100

Decimation 4 12 5 29 126 1429 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1-𝑓 𝑢𝑧𝑧2 96.8

Kasumi 23 22 - 10 1221 - 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1 100
22 12 - 10 1682 - 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1 100

UART-1 6 3 - 34 234 - 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1 88.5
UART-2 2 2 - 32 242 - 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1 88.3

interpolation in Listing 2. The trojan triggers once the output of FIR filter’s final stage (𝑆𝑜𝑃4) matches with a specific
“magic" value. Line 3 is Trigger logic and line 4 shows the payload circuit as output write operation. The trigger activates
for a input resulting in the sum of product of the fourth filter(𝑆𝑜𝑃4) as −.015985481441. Trigger activation leads to
execution of payload circuit (line 3) and writes the output 𝑜𝑑𝑎𝑡𝑎 −𝑤𝑟𝑖𝑡𝑒 = −0.26345. Inputs not satisfying the Trigger
condition behave functionally equivalent to Trojan-free design.

Fuzzing techniques like AFL are unlikely to satisfy the conditional checks against specific values (line 3 of Listing 2)
in a short time-span. AFL failed to detect the trojan in two hours time limit. S2E executing with random seeds also
failed to generate inputs satisfying the trojan trigger condition. However, FuCE leverages the strength of both fuzzing
and concolic execution. FuCE passes the interesting inputs as identified by the fuzzer in phase 𝑓 𝑢𝑧𝑧1 to S2E in phase
𝑐𝑜𝑛𝑐1. S2E traces each input generated by the fuzzer discovering unexplored program states by AFL during phase 𝑓 𝑢𝑧𝑧1.
S2E generates inputs satisfying complex branch conditions to explore the undiscovered states. Thus, FuCE triggered
the trojan payload using S2E and successfully detected the Trojan.

Listing 2. Interpolation - Trojan Logic

1 /* Trojan Triggers based on particular input combination */

2 #elif defined(CWOM) || defined(CWOM_TRI)

3 if(SoP4 == -.015985481441) // trojan trigger logic

4 odata_write = -0.26345; // trojan payload circuit

5 else

6 // Trojan free execution for odata_write

7 #endif

Advanced Encryption Standard (AES) is a symmetric block cipher algorithm. The plain text is 128 bits long and key
can be 128, 192 or 256 bits. S3CBench contain AES-128 bit design and the trojan type is CWOM. This trojan leaks the

Manuscript submitted to ACM

xx Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

secret key for a specific plain-text input corrupting the encryption generating incorrect cipher-text. AES-128 performs
ten rounds of repetitive operation to generate cipher-text 𝐶𝑇10. The trojan implementation performs an additional ’n’
rounds to generate cipher-text (𝐶𝑇10+𝑛). Initially, the attacker tampers the key 𝐾𝑛 to be used in the round 𝑅10+𝑛 for the
round operations: SubBytes, ShiftRows, MixColumns, AddRoundKey. Later, key 𝐾10 can be recovered from the plain text
𝑃 and cipher-text 𝐶𝑇10+𝑛 . Using FuCE, we compare the generated cipher-text with the expected cipher-text to detect
the presence of a Trojan.

Listing 3. AES - Trojan Logic

1 // Trojan Triggers for a particular input present in the plaintext message

2 #ifdef CWOM

3 if (data3 [0] == -1460255950) // trojan trigger logic

4 odata[(i * NB) + j] = (data1[i] $>>$ (j * 8));// trojan payload circuit

5 else // Trojan free execution for output data

6 odata[(i * NB) + j] = 0;

7 #endif

We examined the performance of FuCE on AES. FuCE successfully detected the Trojan in AES-cwom in phase 𝑓 𝑢𝑧𝑧1-
𝑐𝑜𝑛𝑐1 with a 6.5x timing speed-up compared to AFL. From Table 4, we observe that FuCE detected the trojan using
the testcase generated by S2E during phase 𝑐𝑜𝑛𝑐1. We supplied four test-cases generated by AFL during 𝑓 𝑢𝑧𝑧1 to S2E.
However, S2E supplied with random test-cases was unable to detect the trojan (Table 5) and timed-out with a branch
coverage of 81.5%. We indicate the Trojan infected AES in Listing 3 (lines 2 and 3). The Trojan trigger condition for AES
is a rare combination of input values.

2) Case Study II: Coverage Improvement

Listing 4. ADPCM - Encode and Decode Logic

1 // Encode Logic

2 if (diff [15] == 1) { // checking exactness of value

3 width.diff_data = ((diff ^ 0xffff) + 1);

4 neg_flag = true;

5 }

6 else {

7 width.diff_data = diff;

8 neg_flag = false;

9 }

10 // Decode Logic

11 if (width.enc_data > 7) {

12 width.enc_data = 7;

13 dec_tmp = width.enc_data * divider;

14 remainder1 = dec_tmp.range(1, 0);

15 if (remainder1 >= 2) { // Nested branch conditions

16 width.pre_data += (dec_tmp >> 2) + 1;

17 }

18 else {

19 width.pre_data += (dec_tmp >> 2);

20 }

21 }

Manuscript submitted to ACM

FuCE: Fuzzing+Concolic Testing xxi

Adaptive Differential Pulse Code Modulation (ADPCM) converts analog information to binary data. ADPCM converts 16
bits Pulse Code Modulation (PCM) samples into 4-bit samples. The trojan considered is SWM type. The trojan gets
triggered once the counter reaches a specific value corrupting the modulation process. Although FuCE detects the
trojan successfully at phase 𝑓 𝑢𝑧𝑧1 with a coverage of 88.1% but does not attain 100% coverage at this phase. From the
LCOV report it was observed that FuCE was unable to reach certain portions of code with nested conditional branch
statements as given in Listing 4. So FuCE goes to phase 𝑐𝑜𝑛𝑐1 for further exploration with the input seeds generated
by 𝑓 𝑢𝑧𝑧1. At 𝑐𝑜𝑛𝑐1, S2E traces the program following the same path taken by the fuzzer. When S2E arrives at the
conditional check at line 2 (Listing 4) of the encode logic, it realizes that the path was not covered by the fuzzer. So, it
produces input satisfying the condition which drives the execution to this new state transition. After the phase 𝑐𝑜𝑛𝑐1,
the coverage analyzer for FuCE framework found that the coverage improved to 89.5% but the target coverage of 100%
was yet to be reached. Since concolic execution is a slow process, S2E fails to generate test inputs within its time bound,
that satisfy the nested conditional statements at line 11 of the decode logic(Listing 4). So FuCE goes to the next phase
𝑓 𝑢𝑧𝑧2 to look for the undiscovered paths. AFL starts its execution with the input seeds generated by S2E at phase 𝑐𝑜𝑛𝑐1
which guides the fuzzer to quickly penetrate in the nested branch conditions and generate test cases that give 100%
branch coverage for FuCE.

Thus FuCE could achieve 100% branch coverage following the phases 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1-𝑓 𝑢𝑧𝑧2 in the defined time budget
of two hours. From the plot of ADPCM-SWM in Figure 4 (a), we can see that FuCE successfully achieves coverage of
100% in 3800 seconds. AFL on the other hand achieves coverage of 96.4% in 6115 seconds and could not improve further
in the test time of two hours. S2E reaches a maximum coverage of 88.9% at 310 seconds while running for two hours.
The breakdown of result for code coverage of ADPCM-SWM by FuCE could be found in Table 6.

Decimation Filter is a 5-stage filter with five FIR filters cascaded together. The type of trojan inserted here is SWM,
which is triggered for a particular value of count in the design. The trojan is inserted here in the final stage, i.e., the fifth
stage. Results on evaluation of this design of S3CBench have not been reported by any of the state-of-art prior works
AFL-SHT or SCT-HTD. We have evaluated this benchmark successfully with FuCE, AFL and S2E. In our experiments,
all the techniques could successfully detect the trojan in the circuit but FuCE outperformed others significantly with
respect to achievable branch coverage. From the plot of decimation-SWM, in Figure 4 (f), it is observed that the seeds
generated by FuCE could attain a coverage 96.8% running for 3289 seconds. Whereas for AFL the maximum coverage
of 69.1% is attained with seeds generated in the time interval of (30 - 60) seconds and S2E reached the coverage of 73%
in the time interval (100 - 300) seconds beyond which coverage did not increase even after running for two hours of
time limit. FuCE could cover almost all the portions of code using its interlaced execution of phases 𝑓 𝑢𝑧𝑧1-𝑐𝑜𝑛𝑐1-𝑓 𝑢𝑧𝑧2
that AFL and S2E failed to cover individually.

7 CONCLUSION

In our work here, we have identified existing challenges of test-based hardware trojan detection techniques on high-level
synthesized design. To this end, we proposed an end-to-end test-generation framework penetrating into deeper program
segments at the HLS level. Our results show faster detection of trojans with better coverage scores than earlier methods.
The complete framework for our proposed FuCE test-generation framework has the potential to reinforce automated
detection of security vulnerabilities present in HLS designs[26]. We are investigating the ways in which trojans in
RTL/gate level netlist get manifested in HLS using tools like VeriIntel2C, Verilator etc. Future works include exploration

Manuscript submitted to ACM

xxii Mukta Debnath, Animesh Basak Chowdhury, Debasri Saha, and Susmita Sur-Kolay

of input grammar aware fuzzing and more focus on coverage metrics such as Modified Condition/Decision Coverage
(MC/DC) [38] and path coverage.

REFERENCES
[1] afl-cov 2013. Coverage Measuring Tool. https://github.com/mrash/afl-cov.
[2] Alif Ahmed, Farimah Farahmandi, Yousef Iskander, and Prabhat Mishra. 2018. Scalable hardware Trojan activation by interleaving concrete

simulation and symbolic execution. In International Test Conference. 1–10.
[3] A. Ahmed and P. Mishra. 2017. QUEBS: Qualifying event based search in concolic testing for validation of RTL models. In International Conference

on Computer Design. 185–192.
[4] Mainak Banga and Michael S Hsiao. 2011. Odette: A non-scan design-for-test methodology for trojan detection in ics. In 2011 IEEE International

Symposium on Hardware-Oriented Security and Trust. IEEE, 18–23.
[5] Animesh Basak Chowdhury, Ansuman Banerjee, and Bhargab B. Bhattacharya. 2018. ATPG Binning and SAT-Based Approach to Hardware Trojan

Detection for Safety-Critical Systems. In Network and System Security. Springer International Publishing, Cham, 391–410.
[6] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX annual technical conference, FREENIX Track, Vol. 41. Califor-nia,

USA, 46.
[7] Rajat Subhra Chakraborty, Francis Wolff, Somnath Paul, Christos Papachristou, and Swarup Bhunia. 2009. MERO: A statistical approach for

hardware Trojan detection. In International Workshop on Cryptographic Hardware and Embedded Systems. 396–410.
[8] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and M Frans Kaashoek. 2011. Linux kernel vulnerabilities: State-of-the-art

defenses and open problems. In Asia-Pacific Workshop on Systems. 1–5.
[9] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2012. The S2E platform: Design, implementation, and applications. ACM Transactions

on Computer Systems 30, 1 (2012), 1–49.
[10] Animesh Basak Chowdhury, Raveendra Kumar Medicherla, and R Venkatesh. 2019. VeriFuzz: Program aware fuzzing. In International Conference on

Tools and Algorithms for the Construction and Analysis of Systems. 244–249.
[11] clang 2007. clang Compiler. https://clang.llvm.org/.
[12] Crispin Cowan, F Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole. 2000. Buffer overflows: Attacks and defenses for the vulnerability of the

decade. In DARPA Information Survivability Conference and Exposition, Vol. 2. 119–129.
[13] Jonathan Cruz, Farimah Farahmandi, Alif Ahmed, and Prabhat Mishra. 2018. Hardware Trojan detection using ATPG and model checking. In

International Conference on VLSI Design. 91–96.
[14] GCov 2012. GCov Coverage Measurement Tool. https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.
[15] Yuanwen Huang, Swarup Bhunia, and Prabhat Mishra. 2016. MERS: statistical test generation for side-channel analysis based Trojan detection. In

International Conference on Computer and Communications Security. 130–141.
[16] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen. 2018. RFUZZ: Coverage-directed fuzz testing of RTL on FPGAs. In

International Conference on Computer-Aided Design. 1–8.
[17] David Larochelle and David Evans. 2001. Statically detecting likely buffer overflow vulnerabilities. In USENIX Security Symposium.
[18] LCOV 2012. LCOV Coverage Report. http://ltp.sourceforge.net/coverage/lcov.php.
[19] Hoang M Le, Daniel Große, Niklas Bruns, and Rolf Drechsler. 2019. Detection of hardware trojans in SystemC HLS designs via coverage-guided

fuzzing. In Design, Automation & Test in Europe Conference & Exhibition. 602–605.
[20] Bin Lin, Jinchao Chen, and Fei Xie. 2020. Selective concolic testing for hardware trojan detection in behavioral SystemC designs. In Design,

Automation & Test in Europe Conference & Exhibition. 19–24.
[21] Bin Lin, Kai Cong, Zhenkun Yang, Zhigang Liao, Tao Zhan, Christopher Havlicek, and Fei Xie. 2018. Concolic testing of SystemC designs. In

International Symposium on Quality Electronic Design. 1–7.
[22] Bin Lin, Zhenkun Yang, Kai Cong, and Fei Xie. 2016. Generating high coverage tests for SystemC designs using symbolic execution. In Asia and

South Pacific Design Automation Conference. 166–171.
[23] LLVM 2003. LLVM compiler. https://llvm.org/.
[24] Y. Lyu, A. Ahmed, and P. Mishra. 2019. Automated activation of multiple targets in RTL models using concolic testing. In Design, Automation & Test

in Europe Conference & Exhibition. 354–359.
[25] Yangdi Lyu and Prabhat Mishra. 2021. MaxSense: Side-Channel Sensitivity Maximization for Trojan Detection using Statistical Test Patterns. ACM

Transactions on Design Automation of Electronic Systems (TODAES) 26, 3 (2021), 1–21.
[26] M. Rafid Muttaki, Nitin Pundir, Mark Tehranipoor, and Farimah Farahmandi. 2021. Security Assessment of High-Level Synthesis. Springer International

Publishing, Cham, 147–170.
[27] Zhixin Pan and Prabhat Mishra. 2021. Automated test generation for hardware trojan detection using reinforcement learning. In Proceedings of the

26th Asia and South Pacific Design Automation Conference. 408–413.
[28] Sayandeep Saha, Rajat Subhra Chakraborty, Srinivasa Shashank Nuthakki, Debdeep Mukhopadhyay, et al. 2015. Improved test pattern generation

for hardware trojan detection using genetic algorithm and boolean satisfiability. In International Workshop on Cryptographic Hardware and Embedded

Manuscript submitted to ACM

https://github.com/mrash/afl-cov
https://clang.llvm.org/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://ltp.sourceforge.net/coverage/lcov.php
https://llvm.org/

FuCE: Fuzzing+Concolic Testing xxiii

Systems. Springer, 577–596.
[29] Koushik Sen. 2007. Concolic testing. In International Conference on Automated Software Engineering. 571–572.
[30] Bicky Shakya, Tony He, Hassan Salmani, Domenic Forte, Swarup Bhunia, and Mark Tehranipoor. 2017. Benchmarking of hardware trojans and

maliciously affected circuits. Journal of Hardware and Systems Security 1, 1 (2017), 85–102.
[31] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and

Giovanni Vigna. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In Network and Distributed Systems Security. 1–16.
[32] Timothy Trippel, Kang G Shin, Alex Chernyakhovsky, Garret Kelly, Dominic Rizzo, and Matthew Hicks. 2021. Fuzzing Hardware Like Software.

arXiv preprint arXiv:2102.02308 (2021).
[33] Trusthub 2015. Trusthub Benchmark. https://trust-hub.org.
[34] N. Veeranna and B. C. Schafer. 2017. Hardware Trojan detection in behavioral intellectual properties (IP’s) using property checking techniques.

IEEE Transactions on Emerging Topics in Computing 5, 4 (2017), 576–585.
[35] N. Veeranna and B. C. Schafer. 2017. S3CBench: Synthesizable security SystemC benchmarks for high-level synthesis. Journal of Hardware and

Systems Security 1, 2 (2017), 103–113.
[36] Mingzhe Wang, Jie Liang, Yuanliang Chen, Yu Jiang, Xun Jiao, Han Liu, Xibin Zhao, and Jiaguang Sun. 2018. SAFL: increasing and accelerating

testing coverage with symbolic execution and guided fuzzing. In International Conference on Software Engineering. 61–64.
[37] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor. 2016. Hardware Trojans: Lessons Learned after One Decade of Research. ACM

Transaction on Design Automation and Electronic Systems 22, 1, Article 6 (2016).
[38] Yuen Tak Yu and Man Fai Lau. 2006. A comparison of MC/DC, MUMCUT and several other coverage criteria for logical decisions. Journal of Systems

and Software 79, 5 (2006), 577–590.
[39] Michal Zalewski. [n.d.]. American fuzzy lop (2017). ([n. d.]). http://lcamtuf.coredump.cx/afl
[40] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen Jin, Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita

Velasquez, et al. 2018. Rosetta: A realistic high-level synthesis benchmark suite for software programmable FPGAs. In International Symposium on
Field-Programmable Gate Arrays. 269–278.

Manuscript submitted to ACM

https://trust-hub.org
http://lcamtuf.coredump.cx/afl

	Abstract
	1 Introduction
	2 Background
	2.1 Overview of Hardware Trojan
	2.2 Threat model
	2.3 Security Testing
	2.4 Testing for Hardware Trojan detection
	2.5 Trojan detection in high-level design

	3 Limitations and challenges
	3.1 Motivating case-study
	3.2 Evaluating AFL-SHT on this example
	3.3 Evaluating SCT-HTD on this example
	3.4 Lessons learnt

	4 FuCE framework
	4.1 Greybox Fuzzing by AFL
	4.2 Concolic Execution by S2E
	4.3 Fusing fuzzer with concolic execution (FuCE)
	4.4 Hardware Trojan Detection
	4.5 Evaluating FuCE on our motivating example

	5 Experimental setup and design
	5.1 Experimental setup
	5.2 Benchmark characteristics
	5.3 Design of experiments

	6 Empirical analysis
	6.1 Trojan detection
	6.2 Coverage Improvement
	6.3 Case Studies

	7 Conclusion
	References

