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ABSTRACT
We provide a methodology to explain and interpret machine learn-
ing decisions in Computer-Aided Design (CAD) flows. We demon-
strate the efficacy of the methodology to the VLSI testing case.
Such a tool will provide designers with insight into the "black box"
machine learning models/classifiers through human readable sen-
tences based on normally understood design rules or new design
rules. The methodology builds on an intrinsically explainable, rule-
based ML framework, called Sentences in Feature Subsets (SiFS), to
mine human readable decision rules from empirical data sets. SiFS
derives decision rules as compact Boolean logic sentences involving
subsets of features in the input data. The approach is applied to
test point insertion problem in circuits and compared to the ground
truth and traditional design rules.

CCS CONCEPTS
• Computing methodologies → Machine learning; • Hard-
ware → Design for testability; • Information systems → De-
cision support systems.
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1 INTRODUCTION
Increasing complexity in Integrated Circuit (IC) design has driven
the exploration of Machine Learning (ML) techniques (from tra-
ditional models [14] through to state-of-the-art Deep Learning
(DL) [12]) for accelerating the Computer-Aided Design (CAD) flow
[3]. ML has shown promise for predicting downstream impacts
of design choices in earlier stages of design. ML techniques learn
model parameters from existing data to make accurate predictions.
In a typical ML-based CAD flow, designers make decisions based
on the "black box" outputs produced by the trained model, often
without any insight into the factors that led to a given classification
or prediction. If an ML model was able to explain its prediction
making, the guidance would help designers use their domain ex-
pertise to address design problems—for targeting root-causes—or
increase confidence in the model behavior.

Designers use their domain expertise upfront for data curation
and feature engineering, but are given few insights into how the
input feature values contributed to the ultimate prediction. To ad-
dress this, and with wider implications for accountability and fair-
ness [13], studies in explainable and interpretable ML explore tech-
niques for post hoc explainability, to provide insight into black box
decisions (e.g., feature importance [6]), and desiderata for models
that are intrinsically explainable (e.g., linear regression). All works
in MLCAD (including 20+ papers in ML focused on IC test [14])
treat the trained models as black boxes with no explicit focus on
explainability and human interpretability. This gap provides an
opportunity for new insights into ML-based CAD: Explain
and interpret ML-based decisions.

Specifically, we address this problem in the context of ML-based
classifiers [16] for predicting likelihoods that certain circuit ele-
ments (nodes/locations, sub-circuits, etc.) satisfy specific properties
(difficulty-of-testing in this paper) in a computationally efficient
manner (by using ML) than a more direct circuit-based analysis
of the properties. Crucially, along with the ML-based evaluation
of circuit elements, we seek to generate (in an automated manner)
human-readable explanations and interpretations of the decision
logic of the ML classifier. Additionally, we seek to generate context-
sensitive human-readable explanations, i.e., when the ML classifier
identifies multiple circuit elements as likely to satisfy a certain
property, a separate human-readable explanation is generated for
each circuit element to explain why it was classified as such.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


For this purpose, we propose the use of an intrinsically explain-
able, rule-based ML framework, called Sentences in Feature Sub-
sets (SiFS) and investigate: (1) classification accuracy in predicting
node testability on public netlist datasets and (2) qualitative benefits
of this human-readable methodology. SiFS [10] enables automated
generation of compact decision rules, that are comprised of Boolean
logic sentences from subsets of features in the input data. SiFS is a
general methodology applicable to a variety of ML tasks such as,
for example, anomaly detection in network data [9].

We seek to enhance ML-based CAD flows with explanations
that can further inform design decisions alongside the ML model
predictions. While we focus on an IC test problem in this study, SiFS
can be used throughout the CAD flow where model interpretability
can offer insights to humans in the loop. Our contributions are:

• A study of SiFS, anMLmethodology that can be used through-
out the CAD flow for learning human-readable classification
rules, in an Electronic Design Automation (EDA) problem.

• Detailed experimental evaluation on an IC testing case study,
showing up to 95% accuracy in prediction of "hard-to-test"
nodes in a netlist (comparable to recent related works), but
with the added bonus of model interpretability.

• Insights into the opportunities provided by explainability
and interpretability in MLCAD, informing new studies in
this domain.

Section 2 describes background and related work. Section 3 details
the SiFS approach and our adaptation of it the IC test problem.
Section 4 presents our experimental setup and results. Section 5
provides insights and discussions arising from our study.

2 BACKGROUND AND RELATEDWORK
2.1 ML based Approaches for Test
In this study, we focus on IC testability, a popular area for recent
studies in ML CAD [14]. Researchers have formulated the Test Point
Insertion (TPI) problem as anML problem for various objectives like
improving fault coverage or reducing the number of test vectors.

In this work, we focus on identifying hard-to-test locations in a
netlist corresponding to the stuck-at fault model. Identifying such
faulty sites provide insight into appropriate locations for inserting
test points to improve testability. Traditionally, testability measures
like SCOAP [7] estimate the "hardness" of line testability in linear
time. However, such estimations are often coarse and do not work
well in presence of various circuit structures like re-convergent
fanouts [8]. Estimating exact line testability is an NP-class problem
and therefore can only be identified by exhaustive circuit simula-
tion over the input space. Given the impracticality of exhaustive
simulation for industrial designs, ML approaches seek to produce
accurate predictions at a fraction of the computational cost.

Recent works have used Neural Network (NN) based approaches.
For example, Ma et al. use Graph Convolution Networks (GCNs)
to identify "easy to observe" and "hard to observe" nodes. Their
intuition is that the natural graph structure of a netlist aligns well
with the graph-centric GCN formulation such that the ML model
will learn meaningful features implicitly. In an alternative approach,
Sun and Millican propose artificial NNs for predicting TPI quality
by estimating the change in fault coverage [15]. These approaches

use approximate testability measures such as SCOAP [7] as the pre-
dominant input feature and learn complex, inexplicable non-linear
combinations of these features, together with those of neighbor-
ing nodes, for predictions. Both these approaches achieve a sizable
speed-up over conventional fault-simulation based approaches with
reasonable predictive capability. Our proposedwork aims for amore
interpretable ML model while achieving comparable accuracy.

2.2 Explainability and Interpretability
There is growing interest in explainability and interpretability given
the proliferation of "big data" and the potential for complex models
(i.e., DL approaches), especially when used in systems with high
risk/impact [13]. Interpretability is beneficial for guiding and audit-
ing decision making; understanding how different characteristics
of an input (i.e., features) affect the output provides insight into
root causes, enables "sanity checks", and aids model debugging.

Post hoc techniques aim to design "interpretable" approximations
of complex models, typically with trade-off between accuracy and
interpretability [11], or to apply statistical reasoning to determine
feature importance [6]. Part of the interpretability challenge stems
from DL models learning to extract features automatically without
any constraint that the learned features are meaningful to humans.

In contrast, intrinsically explainable models such as linear re-
gression and decision trees require upfront feature engineering by
a human expert. Such models offer a level of interpretability (e.g.,
"impact" of a human-understandable input feature can be under-
stood, in part, by examining learned weights). However, approaches
like linear regression struggle to accommodate complexity by over-
simplifying the decision space. A more advanced approach, such
as SiFS, can derive more complex decision boundaries in feature
space by learning multiple rules; different input samples can "ac-
tivate" different rules, providing a context-aware explanation of a
decision.

3 PROPOSED APPROACH
The structure of the explainable ML approach is shown in Figure 1.
While this methodology can be applied to obtain human-readable
explanations in a wide range of problems in the CAD domain and
beyond, we focus on the TPI problem in this paper.
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Figure 1: Proposedmethodology for explainableMLCADde-
cisions. Training (left) and Inference (right) stages.



3.1 Problem Description
We focus on identifying hard-to-test locations in a combinational
circuit netlist corresponding by means of ML based classification.

Problem: Given a node from a circuit netlist, and a set of node
features, classify the node as "hard-to-test" or otherwise.

A combinational circuit is a a graph 𝐺 (𝑉 , 𝐸), comprising a set
of nodes 𝑉 that are interconnected by edges 𝐸, where the edges
between nodes are the connections between logic gates. We define
a node as "hard-to-test" when the number of test vectors that cover
a stuck-at fault there, 𝑛, as a fraction of a pre-determined number
of random test vectors, 𝑁 , is below some threshold (i.e., when
𝑛/𝑁 < ℎ). We set threshold ℎ to 0.1 in our experiments in Section 4.
More precisely, for each node, the ground truth consists of two
numbers L0 and L1, which indicate the percentages of test inputs to
the circuit that are able to detect a stuck-at-0 fault and a stuck-at-1
fault, respectively. Nodes with small L0 and/or L1 values are hard-
to-test since test inputs are less likely to be able to detect faults at
that node in the circuit. The ground truths can be determined by
running fault simulation using random test vectors.

3.2 Feature Extraction
The first aspect of our approach is feature extraction (① in Figure 1).
For each node in the circuit, we derive four features: SCOAP [7]
controllability 0 and 1, observability, and logic depth from furthest
PI ([CC0, CC1, C0, LL]). From these circuit-level features for the
nodes, we use the graph structure of the circuit to extract additional
features to facilitateML-based classification. The additional features
aggregate characteristics from the local neighborhood of each node
as well as capture connectivity to the primary inputs and outputs
of the circuit. These features (computed for each node) are:

• pct_connected_inputs: % input pins for which there is ≥ 1
path to node

• pct_connected_outputs: % output pins where there is ≥ 1
path from node to the pin

• min_dist_inputs: Shortest path to node from any input pin
• min_dist_outputs: Shortest path from node to any output
pin

• n_paths_from_inputs, n_paths_to_outputs: # distinct paths
from any input pin to node and from node to any output pin

• n_in, n_out: # predecessor nodes and # successor nodes
• mean_CC0_in, mean_CC1_in, mean_CO_in, mean_LL_in:
Average CC0/CC1/CO/LL feature value among predecessors

• max_CC0_in, max_CC1_in, max_CO_in, max_LL_in:
Largest CC0/CC1/CO/LL feature value among predecessors

• min_CC0_in, min_CC1_in, min_CO_in, min_LL_in:
Smallest CC0/CC1/CO/LL feature value among predecessors

• mean_CC0_out, mean_CC1_out, mean_CO_out, mean_LL_out:
Average CC0/CC1/CO/LL feature value among successors

• max_CC0_out, max_CC1_out, max_CO_out, max_LL_out:
Largest CC0/CC1/CO/LL feature value among successors

• min_CC0_out, min_CC1_out, min_CO_out, min_LL_out:
Smallest CC0/CC1/CO/LL feature value among all successors

Since enumerating all paths to input/output pins is computationally
expensive, the distinct path based features are computed with a sat-
uration 𝑆 (defined in our experiments to be 10). With the additional
features above, the feature vector for each node is of length 36.

3.3 ML Formulation and Data Filtering
Since the aim is to find hard-to-test locations, we are interested in
down-selecting nodes to determine good candidates for TPI. Thus,
the ML system does not need to estimate actual L0 or L1 values,
or distinguish between nodes with very high L0 or L1 values and
nodes with medium-sized L0 or L1 values. Instead, the ML system
should be able to identify accurately nodes with low L0 or L1 values.
Thus, we train ML classifiers to predict nodes that would satisfy
any of the following four properties:

• L0 < ℎ, i.e., nodes at which stuck-at-0 faults are hard-to-test
• L1 < ℎ, i.e., nodes at which stuck-at-1 faults are hard-to-test
• L0 < ℎ AND L1 < ℎ, i.e., nodes at which both stuck-at-0
faults and stuck-at-1 faults are hard-to-test

• L0 < ℎ OR L1 < ℎ, i.e., nodes at which either stuck-at-0 faults
or stuck-at-1 faults are hard-to-test.

Since a value of L0 or L1 slightly larger than ℎ does not indicate
that the node is “easy-to-detect,” we define another threshold ℎ (set
to 0.2 in our experiments) and discard training data for which L0 or
L1 values are in the interval [ℎ,ℎ]. We train separate ML classifiers
to detect each of the four node properties above.

As the ML objective is to identify hard-to-test nodes, in particu-
lar where nodes are classified by the model with high confidence.
We set a threshold (0.75 in the experiments in Section 4) on the
confidence value to down-select nodes in the test data (i.e., nodes
for which the continuous-valued likelihood outputs of the classi-
fier ≤ 0.25 or ≥ 0.75 are retained). For experimental purposes, we
measure accuracy of the classifiers by considering these nodes.

3.4 Human-Readable Interpretable ML
The SiFS methodology [9, 10] answers the following questions:

• Which features in the data are relevant for classification?
• What combinations of features (i.e., combinations of inequal-
ities involving subsets of features) can be used to classify?

• Given an input data point, what is the best context-sensitive
explanation for classification of that data point?

For this purpose, we use a multi-step architecture as shown in
Figure 1. The methodology is applied to the four node property
classification tasks (i.e., four different labels in a multi-label classifi-
cation context) defined in Section 3.3. For brevity, we describe the
methodology considering one ML task, i.e., considering one label.

② Feature Down-Selection: To find the subset of features that
are most relevant for the classification task, we use a random forest
and genetic algorithm based approach. A random forest classifier
offers an efficient feature utility estimator and a genetic algorithm
searches the space of possible feature subsets based on classification
accuracy obtained using the pruned feature vectors.

Starting with a population of randomly initialized candidate fea-
ture subsets, we train random forest classifiers using training data
restricted to each of the candidate feature subsets. The population
of candidate feature subsets is iteratively evolved using random
mutation and cross-over operators based on the classification per-
formance of the random forest classifiers and the feature utilities
they estimate. The process is iterated until a stopping condition is
met (e.g., max number of epochs and/or compactness of feature sub-
set). While any classification algorithm can be the guiding heuristic



for this iterative feature pruning, a random forest has the advantage
of having optimized off-the-shelf implementations (e.g., [1]) that
provide feature utility estimates (feature “importances”) computed
from the training data.

③ Sentence-Based Classifier Training: From the reduced set
of features down-selected as discussed above, a SiFS classification
model is defined as an OR-combination of a set of “sentences.”
Each sentence is defined as an AND-combination of “words.” Each
word is an inequality involving a subset of features. The choice of
features for each word is represented using mask variables. The
mask variables for the inequalities in each sentence are trained
along with the coefficients that appear in the inequalities using
stochastic gradient descent and genetic algorithms. Denoting the
subset of features down-selected as discussed above by 𝑓1, . . . , 𝑓𝑛𝑓

,
with a normalization for zero mean and unit variance (with the
scale and shift parameters for the normalization computed from
training data). the multi-sentence classifier model can be written as

𝑠 𝑗 = ∧𝑘=1,...,𝑛𝑤

( 𝑛𝑓∑
𝑖=1

𝑚𝑖, 𝑗,𝑘𝑐𝑖, 𝑗,𝑘 𝑓𝑖 ≥ 𝑐 (𝑛𝑓 +1), 𝑗,𝑘
)
, 𝑗 = 1, . . . , 𝑛𝑠 (1)

𝑦 = ∨𝑗=1,...,𝑛𝑠 𝑠 𝑗 (2)

where 𝑛𝑠 is the number of sentences in the model, 𝑛𝑤 is the number
of words in each sentence, and𝑦 is the binary output of the classifier.
In (1),𝑚𝑖, 𝑗,𝑘 are the binary “mask” variables and 𝑐𝑖, 𝑗,𝑘 are the coef-
ficients in the inequalities. To enable gradient-based learning of the
coefficients 𝑐𝑖, 𝑗,𝑘 , the “hard” inequalities and Boolean combinations
in (1) are softened to a differentiable relaxation given by:

𝑠 𝑗 = Π𝑛𝑤

𝑘=1

{
𝜎 (

𝑛𝑓∑
𝑖=1

𝑚𝑖, 𝑗,𝑘𝑐𝑖, 𝑗,𝑘 𝑓𝑖 − 𝑐 (𝑛𝑓 +1), 𝑗,𝑘 )
}
, 𝑗 = 1, . . . , 𝑛𝑠 (3)

𝑦 = max{𝑠1, . . . , 𝑠𝑛𝑠 } (4)
𝑦 = 0 if 𝑦 ≤ 0.5 and 1 if 𝑦 > 0.5. (5)

In (3), 𝜎 denotes the sigmoid function given by 𝜎 (𝑎) = 1
1+𝑒−𝑎 . The

gradient-based learning of the coefficients 𝑐𝑖, 𝑗,𝑘 uses randomly
drawn mini-batches and a loss function defined as a combination
of the binary cross-entropy, a penalty term for false positives, and
a regularizer to penalize sizes of the coefficients 𝑐𝑖, 𝑗,𝑘 .

In concert with the gradient-based learning of the coefficients
𝑐𝑖, 𝑗,𝑘 , the mask variables are updated by a genetic algorithm. The
mask variable updates happen after some number of epochs of the
gradient-based updates. For the genetic updates, we define a “good-
ness” of a sentence 𝑠 𝑗 based on the true positive rate of the sentence,
a penalty on the false positive rate of the sentence, and a measure
of the sentence complexity. We measure sentence complexity as
the weighted sum of the effective word lengths in the sentence
and the number of distinct features in it. The sentence population
is randomly initialized. The sentences are sorted by decreasing
goodness and we iteratively construct a subset of "best" sentences
by adding sentences that contribute true positive classifications of
the training data on top of those classified by the sentences in the
subset. The genetic update of the mask variables𝑚𝑖, 𝑗,𝑘 is performed
by drawing extra sentences based on goodness and by introducing
random mutations to generate the next generation of sentences.

The gradient-based and genetic updates are iterated until a stop-
ping condition (e.g., preset max. number of epochs). The sentence

population is pruned to retain the best subset (i.e., sentences with
the highest goodness) and compressed to remove word redundan-
cies (i.e., inequalities). The compression considers instances where
(i) inequalities are redundant given physically relevant upper and
lower bounds for the features in the input data and (ii) multiple
inequalities that are approximately the same (as measured by the
angle between the corresponding hyperplanes in the feature space).

④ Extraction of Context-Sensitive Human-Readable Ex-
planation: Each sentence in the multi-sentence SiFS classifier
model estimates a sub-volume of an overall volume in feature space
within which lie some data points of a given class,𝐶 . The estimated
volume in feature space corresponding to 𝐶 is the union of the sub-
volumes defined by each sentence. The model labels an input data
point as being in 𝐶 when it "triggers" any of the learned sentences.
From the subset of activated sentences for a data point, the “best”
sentence for that data point is picked based on the activation value
of the sentence (i.e., 𝑠 𝑗 from (3)) and the goodness of the sentence
in the context of the genetic updates. This best sentence provides
the human-readable explanation and is reported as the context-
sensitive identification of a subset of features and combinations of
features as a Boolean combination of inequalities.

3.5 Decision Making
As discussed in Section 3.3, theML classifier identifies nodes that are
likely to be hard-to-test. Hence, these nodes are good candidates for
test point insertion. Therefore, to iteratively improve testability of
the circuit, the proposed ML methodology can be used as a guiding
heuristic for an iterative TPI algorithm. Such an iterative algorithm
can, for example, consider a top 𝑘% of the nodes identified by the
ML methodology as hard-to-test, and then after inserting output
pins at each of these nodes, rerun the ML methodology. In this
paper, we focus on the core ML problem of detecting hard-to-test
points and explaining in a human-readable way the decision logic
for these classifications. Hence, for brevity, we do not consider
explicitly further the iterative TPI application of the methodology.

4 EXPERIMENTAL SETUP AND RESULTS
4.1 Experimental Overview
We apply SiFS on a set of benchmark circuits (summarized in Sec-
tion 4.2). We apply the feature extraction and ML algorithms dis-
cussed in Section 3 to obtain an explainable ML system for the four
classification tasks outlined in Section 3.3. The experimental results
are summarized in terms of the obtained classification performance
in Section 4.3 and in terms of human-readable explanations in Sec-
tion 4.4. High accuracy, precision, etc., in detecting hard-to-test
nodes are attained while providing compact human-understandable,
context-sensitive explanations of the decision as combinations of
inequalities among subsets of features in the input data.

4.2 Netlist Datasets from Benchmark Circuits
We use circuits from the publicly available ISCAS and EPFL bench-
marks [2, 4, 5]. They are listed in Table 1 ranging from small (231-
node iscas85 c499) to large (14712-node epfl voter). These circuits
were randomly split into training and testing datasets.

• Training: 15 circuits from Table 1 except the five for testing.



• Testing: epfl (router, voter), iscas89 (s15850, s838, s9234).

We obtain the SCOAP features and L0/L1 for the circuits using Men-
tor’s Tessent 2019.1 DFT tool. Figure 2 summarizes some SCOAP
statistics for the circuits. All benchmarks are scanned and syn-
thesized using ABC. To obtain ground-truth testability scores for
stuck-at-0 and stuck-at-1 faults (L0/L1, respectively), we generated
1 million random test vectors for each circuit and identified the %
of test vectors that can detect the faults for each node in netlist.

We do not use some parts of a circuit for training and the rest of
the circuit for testing. Instead, we use separate circuits for training
and testing. This ensures that the ML system is not learning inciden-
tal artifacts of a circuit, but is learning physically relevant tie-ins
between the semantically meaningful features (in Section 3.2) and
the "hard-to-test" properties (in Section 3.3).

The training dataset (i.e., the set of all nodes from all the circuits
used for training) has 35091 nodes. As discussed in Section 3.3, the
nodes in the training dataset are down-selected to focus the ML
training on the nodes that offer the most insights into the hard-
to-test properties. We retain those nodes from the training data
whose ground-truth L0 and L1 labels are in either a low- or a high-
magnitude range. The down-selected training dataset has 30540
nodes. The testing dataset has 21208 nodes. For each of the nodes
in both datasets, the four node-level features (CC0, CC1, C0, and LL)
are computed and additional features based on the graph structure

Table 1: Circuits used for experimental studies.

Category Netlist
iscas85 c432, c499, c1908, c3540, c7552
iscas89 s526, s832, s838, s1494, s9234, s15850, s38584
epfl arbiter, cavlc, decoder, i2c, int2float, priority, router, voter

Figure 2: Distribution of SCOAP testability metrics.

Table 2: Classification performance on the testing dataset.

Task #down-sel. Accuracy Precision Recall F1
Low L0 12949 0.898 0.898 0.990 0.942
Low L1 5718 0.910 0.884 0.955 0.918

Low L0 AND Low L1 3806 0.929 0.857 0.914 0.884
Low L0 OR Low L1 12645 0.951 0.963 0.980 0.971

of the circuit are constructed as discussed in Section 3.2 yielding a
36-element feature vector for each node.

4.3 Classification Performance
As discussed in Section 3.3, we train a classifier for each of the four
classification tasks: classifying a node as hard-to-test for stuck-at-
0 faults, hard-to-test for stuck-at-faults, hard-to-test both types,
and hard-to-test for either type. As discussed in Section 3.3, the
continuous-valued activation outputs (which can be viewed as
confidence values or likelihoods in a [0,1] interval) are used to down-
select nodes in the testing dataset to those nodes that are classified
as TRUE or FALSE (for the particular classification task addressed by
the classifier) with confidence higher than the threshold. This down-
selection is performed separately for each of the four classification
tasks. The classification performance is then measured on these
down-selected nodes using the ground-truth labels computed as
defined in Section 4.2. The classification performance is summarized
in Table 2. The numbers of down-selected nodes for each of the
four classification tasks are provided in Table 2.

Since the primary objective of our ML classifier is to find good
TPI candidates, we next analyze to what extent nodes flagged as
hard-to-test with high confidence by the ML classifiers are indeed
hard-to-test (based on ground-truth labels). We sort the testing
dataset nodes (separately for each of the four classification tasks) in
the order of decreasing confidence values of the TRUE label. Then,
for multiple values of 𝑛, we plot the number of the top-𝑛 nodes that
are indeed hard-to-test (Figure 3). Comparing with the ideal case
where all top-𝑛 nodes are indeed hard-to-test (black dotted line in
Figure 3), we see a strong correlation between confidence values
and actual difficulty of testing. This is especially the case for the
“Low L0 OR Low L1” task, which is the most important for the TPI
application since those nodes are hard to test for at least one of the
stuck-at-0 and stuck-at-1 fault scenarios.

4.4 Human-Readable Explanations
As discussed in Section 3.4, the “best” sentences can be extracted
for each test data point that is classified as TRUE for the particular
binary classification task. For discussion, we examine a selection
of sentences that are picked as best for a majority of the test data
points for classification tasks defined in Section 3.3. These sentences
are not the only sentences used in classification, other nodes may be
detected by other sentences. These other sentences would be similar
in structure, but possibly with different numbers of words in the
sentences and with different coefficients and mask variables. The
features in the explanations correspond to selected features from
the list in Section 3.2. To interpret the explanations, we qualitatively
consider the relative weights of the features and the combination
of features in the words of each sentence. These offer insights into
how the ML classifier makes some of its decisions.



ML Explanation for Low L0 (hard-to-test stuck-at-0):
word 1: (-0.011*f1+0.53*f2+1*f3 > -0.38)
word 2: AND (0.98*f1+0.32*f2+1*f3-2.5*f4 > -0.091)
word 3: AND (-0.11*f1+1*f2+0.039*f3+0.33*f4 > -0.052)
where f1 = CO, f2 = mean_CO_in,
f3 = pct_connected_outputs, f4 = CC1

Test Expert Interpretation: Fromword 1, the classifier recognises
that nodes connected to a high number of primary outputs (i.e., as f3
increases) with immediate predecessors that have low observability
(i.e., as f2 increases) are possibly hard-to-test. Word 2, suggests
the classifier has learned that a node is possibly hard-to-test in
situations where controllability decreases (i.e., as f4 increases) but
only if this is not balanced out by its and its neighbors’ observability
(i.e., f1, f2, f3 should be relatively larger than f4). In word 3, the
node is possibly hard-to-test if it has lower controllability (i.e., as f4
increases) along with lower observability (i.e., as f1 increases) with
less consideration given to % of primary outputs in a node’s fanout.
ML Explanation for Low L0 AND Low L1:
word 1: (+0.54*f2+0.24*f3-1.7*f6 > -1)
word 2: AND (-0.091*f5-0.11*f7+1*f9 > 0.017)
where f1 = min_CO_out, f2 = min_dist_outputs,
f3 = pct_connected_outputs, f4 = pct_connected_inputs,
f5 = min_LL_out, f6 = n_paths_to_outputs,
f7 = mean_CC1_in, f8 = mean_CC0_in, f9 = n_out

Test Expert Interpretation: In word 1, the classifier learned to
recognize that even though a node is close to the primary outputs
(i.e, with decreasing f2) or is connected to many outputs (i.e., with
increasing f3), it does not reflexively mean that the node is easy-to-
test. A higher number of paths from the node to primary outputs
(i.e., with increasing f6) is important for making the node easier to
test. From word 2, we can interpret that the model spots nodes with
a high fanout (i.e., with increasing f9) as hard-to-test if the mean
controllability of its predecessors is low (i.e., with increasing f7).

5 DISCUSSION AND CONCLUDING REMARKS
We explored the potential for explainable ML in CAD, with promis-
ing results in IC testing. For the classification objective (detecting
hard-to-test nodes) we considered, for this proof-of-concept ap-
plication of the human-readable ML methodology, all the feature

Figure 3: # of top-ranked flagged nodes in test data that are
actually hard to test based on threshold-based ground truth.

elements are physically relevant to the classification tasks. To some
extent, the features selected through our down-selection and train-
ing processes to form human-readable sentences are somewhat
random and can vary between different runs and train/test splits.
Nevertheless, the generated sentence-based explanations are more
human-understandable than arbitrary combinations of the 36 fea-
tures and more human-interpretable than other classifiers such as
decision trees, random forests, and neural networks.

Selecting features that are understandable and physically rele-
vant for classification remains challenging. Where some features
are detected as not relevant for a classification task, our approach
eliminates such features leaving behind vital human-interpretable
clues as features that are the most relevant. In turn, it provides
insights to engineers when making design decisions, such as high-
lighting areas of a circuit to focus on.
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