
Adversarially Robust Learning
via Entropic Regularization

Gauri Jagatap, Animesh Basak Chowdhury, Siddharth Garg and Chinmay Hegde
New York University

{gauri.jagatap,abc586,sg175,chinmay.h}@nyu.edu

Abstract

In this paper we propose a new family of algorithms for training adversarially robust
deep neural networks. We formulate a new loss function that uses an entropic
regularization. Our loss function considers the contribution of adversarial samples
which are drawn from a specially designed distribution that assigns high probability
to points with high loss from the immediate neighborhood of training samples. Our
data entropy guided SGD approach is designed to search for adversarially robust
valleys of the loss landscape. We observe that our approach generalizes better in
terms of classification accuracy robustness as compared to state of art approaches
based on projected gradient descent.

1 Introduction

Deep neural networks have led to significant breakthroughs in the fields of computer vision [1],
natural language processing [2], speech processing [3], recommendation systems [4] and forensic
imaging [5]. However, deep networks have also been shown to be very susceptible to carefully
designed “attacks" [6, 7, 8]. In particular, the outputs of networks trained via traditional approaches
are rather brittle to maliciously crafted perturbations in both input data as well as network weights [9].

Formally put, suppose the forward map between the inputs x and outputs y is modelled via a
neural network as y = f(w;x) where w represents the set of trainable weight parameters. For a
classification task, given a labeled dataset {xi, yi}, i = 1, . . . , n, the standard procedure for training
neural networks is to seek the weight parameters w that minimize the empirical risk:

ŵ = arg min
w

1

n

n∑
i=1

L(f(w;xi), yi) := L(X;Y,w).

However, the prediction ŷ(x) = f(ŵ;x) can be very sensitive to changes in both w and x. For
example, if a bounded perturbation to a test image input (or to the neural network weights) is
permitted, i.e. ŷi = f(w;xi + δi) where δi represents the perturbation, then the predicted label ŷi
can be made arbitrarily different from the true label yi.

Several techniques for finding such adversarial perturbations have been put forth. Typically, this can
be achieved by maximizing the loss function within a neighborhood around the test point x [10, 11]:

x̄worst = arg max
δ∈∆p

L(f(ŵ;x+ δ), y) (1)

The perturbation set ∆p is typically an `p ball for some p ∈ {0, 1, 2,∞}. We discuss several attack
models in the next section.

The existence of adversarial attacks motivates the need for a “defense” mechanism that makes the
network under consideration more robust. Despite a wealth of proposed defense techniques, the
jury is still out on how optimal defenses should be constructed [12]. Broadly, there seem to be two

Preprint. Under review.

ar
X

iv
:2

00
8.

12
33

8v
1

 [
cs

.L
G

]
 2

7
A

ug
 2

02
0

families of effective defenses. The first involves adversarial training [11]. Here, an adversarial input
is discovered by solving (16) and added to the training dataset; this has the effect of optimizing a
robust version of the empirical risk:

ŵ = min
w

max
δ∈∆p

1

n

n∑
i=1

L(f(w;xi + δ), yi).

The second involves randomized smoothing. Here, both training the network as well as the inference
made by the network are smoothed out over several stochastic perturbations of the attack example
[13, 14, 15]. This has the effect of optimizing a smoothed-adversarial version of the empirical risk.1

In this paper, we propose a new approach for learning adversarially robust neural networks. Our key
conceptual ingredient underlying our approach is entropic regularization. Borrowing intuition from
[16], instead of the empirical risk (or its adversarial counterpart), our algorithm instead optimizes
over an local entropy-regularized version of the empirical risk:

ŵ = arg min
w

∫
X′
L(X ′;Y,w)

[
Z−1 exp

(
L(X ′;Y,w)− γ

2
‖X −X ′‖pp

)] dX ′. (2)

Intuitively, this new loss function can be viewed as the convolution of the empirical risk with a
specific Gibbs distribution to sample points from the neighborhoods X ′ of the training data points
X . Therefore, compared to adversarial training, we have replaced the inner maximization with an
expected value with respect to the Gibbs measure which is matched to the geometry of the perturbation
set.

Since the above loss function is difficult to optimize (or even evaluate exactly), we instead approximate
it via Monte Carlo techniques. In particular, we use Stochastic Gradient Langevin Dynamics [17],
which is well-known to be scalable to large datasets. In this manner, our approach blends in elements
from both adversarial training as well as randomized smoothing.

To summarize, our specific contributions are as follows:

1. We propose a new entropy-regularized loss function for training deep neural networks (Eq. 2) that
is a robust version of the empirical risk.

2. We propose a new Monte Carlo algorithm to optimize this new loss function that is based on
Stochastic Gradient Langevin Dynamics. We call this approach Data-Entropy SGD (DESGD).

3. We show that DESGD-trained networks provide improved (robust) test accuracy when compared
to existing defense approaches.

In particular, we are able to train an `∞-robust CIFAR-10 model to 41.8% accuracy at attack level
ε = 8/255, which is higher than the latest reported levels for defenses based on both adversarial
training as well as randomized smoothing [11, 18, 15].

2 Relation to Prior Work

Due to tight space constraints, our review of related work will unfortunately be incomplete. See [19]
for a more thorough review of the literature.

Evidence for the existence of adversarial inputs for deep neural networks is by now well estab-
lished [20, 21, 22, 23, 24, 25]. Let us focus on image classification. The majority of attacks have
focused on the setting where the adversary confounds the classifier by adding an imperceptible
perturbation to a given input image. The range of the perturbation is pre-specified in terms of bounded
pixel-space `p-norm balls. Specifically, an `p- attack model allows the adversary to search over the
set of input perturbations ∆p,ε = {δ : ‖δ‖p ≤ ε} for p = {0, 1, 2,∞}.
Initial attack methods, including the Fast Gradient Sign Method (FGSM) and its variants [26, 27, 28].
proposed techniques for generating adversarial examples by ascending along the sign of the loss
gradient:

xadv = x+ ε sgn(∇xL(f(ŵ;x), y)),

1The latter family of methods has the additional benefit of being certifiably robust: all points within a ball of
a given radius around the test point are provably classified with the correct label.

2

where (xadv − x) ∈ ∆∞,ε. Madry et. al. [11] proposed a stronger adversarial attack via projected
gradient descent (PGD) by iterating FGSM several times, such that

xt+1 = Πx+∆p,ε(x
t + α sgn(∇xL(f(ŵ;x), y)),

where p = {2,∞}. These attacks are (arguably) the most successful available attack techniques
reported to date, and serve as the basis of our comparisons.

For given attack models, several defense strategies have been developed. In [11], adversarial training
is performed via the min-max formulation Eq. 16. The inner maximization is solved using PGD, while
the outer objective is minimized using stochastic gradient descent (SGD) with respect to w. This can
be slow to implement, and speed-ups have been proposed in [29] and [18]. In [30, 14, 13, 15], the
authors developed certified defense strategies via randomized smoothing. This approach consists of
two stages: the first stage consists of training with noisy samples, and the second stage produces an
ensemble-based inference. [19] contains a detailed overview of attack and defense models.

In a different line of work, there have been efforts towards building neural network networks with
improved generalization properties. In particular, heuristic experiments by [31, 32, 33] suggest that
the loss surface at the final learned weights for well-generalizing models is relatively “flat". Building
on this intuition, Chaudhari et. al. [16] showed that by explicitly introducing a smoothing term (via
entropic regularization) to the training objective, the learning procedure weights towards regions
with flatter minima by design. Their approach, Entropy-SGD (or ESGD) is shown to possess better
generalization properties in deep networks. We leverage this intuition, but develop a new algorithm
for training deep networks with better adversarial robustness properties.

3 Problem Formulation

The task of classification, given a training labelled dataset {xi ∈ X , yi}, i ∈ {1, . . . , n},
consists of solving the standard objective by optimizing weight parameters w, such that
minw

1
n

∑n
i=1 L(f(w;xi), yi), where yi is a one-hot class encoding vector of length m and m

is the total number of classes. The training data matrix itself is stored as X ∈ Rn×d and labels in
Y ∈ Rn where we have access to n training samples which are d-dimensional each. Given this
formulation, the primary task is to minimize the Cross Entropy Loss (CEL) function L, which can be
defined as follows:

L(w;X,Y) = − 1

n

n∑
i=1

(1− yi) log(1− ŷi) + yi log(ŷi). (3)

Several existing optimization methods from the literature can be used to perform this minimization,
including Stochastic Gradient Descent (SGD), ADAM, and Adagrad. In this paper, we design an
augmented version of the loss function in Eq. 3, and also introduce a procedure that we call Data-
Entropy SGD to minimize the same. We first recap the Entropy SGD [16]; see also Appendix A of
the supplement. Entropy-SGD considers an augmented loss function of the form:

Lent(w;X,Y) = − log

(∫
w′

exp

(
−L(w′;X,Y)− γ

2
‖w − w′‖22

)
dw′

)
(4)

By design, minimization of this augmented loss function promotes minima with wide valleys. Such
a minima would be robust to perturbations in w, however may not be necessarily be advantageous
against adversarial data samples xadv (see Section 4). In our experiments section below we show
that Entropy-SGD offers comparable (or even worse) robustness to adversarial attacks compared to
standard SGD.

For the task of adversarial robustness, we instead develop a data-dependent version of Entropy-SGD.
To model for perturbations in data instead of weights, we design an augmented loss that regularizes
the data space. Note that we are only looking at specific perturbations that increase the overall loss
value of prediction. In order to formally motivate our approach, we first make some assumptions.
Assumption 1. The distribution of possible adversarial data inputs of the neural network obeys a
positive exponential distribution of the form below, where the domain of L(X;Y,w) is bounded:

p(X;Y,w, β) =

{
Z−1
w,β exp

(
βL(X;Y,w)

)
if 0 ≤ L(X;Y,w) ≤ R,

0 if L(X;Y,w) > R,
(5)

3

and Zw,β is the partition function that normalizes the probability distribution.

Intuitively, the neural network is more likely to “see" perturbed examples from the adversary cor-
responding to higher loss values as compared to lower loss values. (The parameter R is to chosen
to ensure that the integral of the probability curve is bounded.) When the temperature parameter
β →∞, the above Gibbs distribution concentrates at the maximizer(s) of L(X̄;Y,w), where X̄ is
the “worst possible" set of adversarial inputs to the domain of the loss function for fixed weights w.
Assumption 2. Set β = 1. A modified distribution, (without loss of generality, setting β = 1) with
an additional smoothing parameter, assumes the form:

p(X ′;X,Y,w, γ) =

{
Z−1
X,w,γ exp

(
L(X ′;Y,w)− γ

2 ‖X
′ −X‖2F

)
if 0 ≤ L(X ′;Y,w) ≤ R

0 if L(X ′;Y,w) > R

(6)
where ZX,w,γ is the partition function that normalizes the probability distribution.

Here γ controls the penalty of the distance of the adversary from true dataX; if γ →∞, the sampling
is sharp, and this corresponds to no smoothing effect, which is the same as minimizing the standard
loss, meanwhile γ → 0 corresponds to a uniform contribution from all possible data points in the
loss manifold.

Now, we develop an augmented loss function which incorporates the probabilistic formulation in
Assumption 3. The standard objective can be re-written as the functional convolution:

min
w
L(w;X,Y) := min

w

(∫
X′
L(X ′;Y,w)δ(X −X ′)dX ′

)
which can be seen as a sharp sampling of the loss function at training points X . Now, if we define the
Data-Entropy Loss as:

Lde(w;X,Y) =

∫
X′
L(X ′;Y,w)p(X ′;X,Y,w, γ)dX ′ (7)

our new objective is to minimize this augmented objective function Lde(w;x), which resembles
expected value of the standard loss function sampled according to a distribution that (i) penalizes
points further away from the true training data (ii) boosts data points which correspond to high loss
values. Specifically, the adversarial samples generated by the distribution in Assumption 3 will
correspond to those with high loss values in the immediate neighborhood of the true data samples.

If gradient descent is used to minimize the loss in Eq. 7, the gradient update corresponding to the
augmented loss function can be computing as follows

∇wLde(w;X,Y) = ∇w
∫
X′
L(X ′;Y,w)p(X ′;X,Y,w, γ)dX ′

= ∇wEX′∼p(X′)[L(X ′;Y,w)] (8)

Correspondingly, the weights of the network, when trained using gradient descent, using Eq. 8, can
be updated as

w+ = w − η∇wLde(w;X,Y) (9)
where η is the step size. The expectation in Eq. 8 is carried out over the probability distribution
of data samples X ′ as defined in Assumption 2. This can be seen as the adversarial version of the
formulation developed in Entropy SGD [16], where the authors use a Gibbs distribution to model an
augmented loss function that explores the loss surface at points that are perturbed from the current
weights w, denoted by w′ (see Appendix A of the supplement). In contrast, in our approach, we
consider loss contributions from perturbations X ′ of data points X . This analogue is driven by the
fact that the core objective in [16] is to design a network which is robust to perturbations in weights,
where as the core objective of this paper is to design a network that is robust to perturbations in the
inputs.

The expectation in Eq. 8 is computationally intractable to optimize (or evaluate). However, using the
Euler discretization of the Langevin Stochastic Differential Equation [17], it can be approximated
well. Samples can be generated from p(X ′) as:

X ′t+1 = X ′t + η′∇X′ log p(X ′t) +
√

2η′εN (0, I) (10)

4

Algorithm 1 Data Entropy SGD

1: Input: X = [XB1
, XB2

. . . XBJ], f, η, η′, w = w0, γ, ε
2: for t = 0, · · ·T − 1 do

(outer loop of SGD)
3: for j = 1, · · · J do

(scan through all batches of data)
4: x0

i ← xi + δi {∀xi ∈ XBj , L is number of samples generated using Langevin dynamics}
5: µj ← 0
6: for k = 0, · · · , L− 1 do
7: dx′k ← 1

nj

∑nj
i=1∇x=x′kL(f(wt;x)) + γ(xk − x′k)

8: x′k+1 ← x′k + η′dx′k +
√

2η′εN (0, 1) {Langevin update}
9: µk ← 1

B

∑
xi∈XBj

L(wt;x′k+1) {augmented batch loss for XBj}

10: µj ← 1
L (µj + µk)

11: end for
12: dLt ← ∇wµj
13: wt+1 ← wt − ηdLt
14: end for
15: end for
16: Output ŵ ← wT

where η′ is the step size for Langevin sampling, ε is a scaling factor that controls additive noise. In
Langevin dynamics, when one considers the starting point ofX ′0 ∼ N (0, I) then the procedure above
yields X ′t→∞ that follows the distribution p(X ′). Intuitively, the stochastic process X ′t is more
likely to visit points in the immediate neighborhoods of the entire training dataset X corresponding
to high loss values.

Observe that X ′ and X have the same dimensions and the gradient term in the above equation needs
to be computed over n, d-dimensional data points. In practice this can be computationally expensive.
Therefore, we discuss a stochastic variant of this update rule, which considers mini-batches of training
data instead, in a subsequent subsection. Plugging in the distribution in Eq.5, and using the Euler
discretization for Langevin Stochastic Differential Equations, the update rule for sampling X ′ is

X ′t+1 = X ′t + η∇X′t

(
L(X ′t;Y,w)− γ

2
‖X −X ′t‖2F

)
+
√

2ηN (0, I)

= X ′t + η∇X′L(X ′t;Y,w) + γ(X −X ′t) +
√

2ηN (0, I) (11)

where we have incorporated ZX,wγ in the step size η. Note that as the number of updates t→∞, the
estimates from the procedure in Eq. 11 converge to samples from the true distribution p(X ′). We then
want to estimate estimate ∇wLde(w;X,Y) = ∇wEX′∼p(X′)

[
L(w;X ′, Y)

]
using this sampling

procedure.

Since X ′∞ ∼ p(X ′), the expected value of a function of X ′ can be derived by simply using a sample
mean of the sequence of iterates produced by the Langevin procedure [17] as is typical in the Markov
Chain Monte Carlo (MCMC) literature. One can estimate EX′∼p(X′)

[
L(w;X ′, Y)

]
by averaging

over many such iterates generated from this process.

Batch-wise updates for stochastic gradient estimates: As is typical with large datasets, instead of
using the entire training data for computing gradients in Eq. 8 and Eq. 10, one can use batch-wise
data where the training data is segmented into J batches [XB1

, XB2
. . . XBJ]. This is essentially a

combination of Stochastic Gradient Descent and Langevin Dynamics and is known as Stochastic
Gradient Langevin Dynamics in recent literature [17]. We discuss this adaptation in further detail in
Appendix B in the supplementary material.

This discussion effectively leads to the algorithm shown in Algorithm 1, which we refer to as Data
Entropy SGD (or DE-SGD).

Comparison to PGD-SGD: In [11] the authors use adversarial training to produce robust networks
from scratch against universal first order attacks generated using PGD. This setup is described in [11]

5

(see also Algorithm 3 in Appendix C of the supplementary material for reference) and we will call
this PGD-SGD.

It is easy to see that the updates of the robust training algorithm in [11] (Algorithm 3, Appendix C,
supplement) are similar to that of Algorithm 1, consisting broadly of two types of gradient operations
in an alternating fashion - (i) an (inner) gradient with respect to samples X (or batch-wise samples
XBj) and (ii) an (outer) gradient with respect to weights w. While PGD-SGD minimizes the worst-
case loss in an ε-neighborhood (specifically `2 or `∞ ball) of X , DESGD minimizes an average loss
over our specifically designed probability distribution (Assumption 3) in the neighborhood of X .
DESGD does this via sampling points in the immediate `2 neighborhood of X , which correspond to
high loss values, with higher probability as compared to points further away.

The width of the Gaussian smoothing is adjusted with γ, which is analogous to controlling the
projection radius ε in the inner-maximization of PGD-SGD (refer Algorithm 3 in Appendix C of
the supplement). The Langevin sampling updates in Algorithm 1 are therefore analogous to the
gradient updates in the inner maximization of Algorithm 3 in Appendix C, with an additional distance
annealing penalty and noise. Meanwhile, there is an outer minimization of an augmented loss function
with respect to network weights in both algorithms. In this way, DESGD can be re-interpreted as a
stochastic formalization of `2-PGD-SGD, with noisy controlled updates. Intuitively this also suggests
that the formulation described in Eq. 11 should be more robust against `2-ball attacks.

Extension to defense against `∞-attacks: It is evident that due to the isotropic structure of the Gibbs
measure around each data point, the primary form of DESGD is best suited for `2 attacks. However
this may not necessarily translate to robustness against `∞ attacks. For this case, one can use an
alternate assumption on the distribution of potential adversarial examples.
Assumption 3. We consider a modification of the distribution in Assumption 2 to account for
robustness against `∞ type attacks:

p(X ′;X,Y,w, γ) =

{
Z−1
X,w,γ exp

(
L(X ′;Y,w)− γ

2 ‖X
′ −X‖∞

)
if 0 ≤ L(X ′;Y,w) ≤ R

0 if L(X ′;Y,w) > R

(12)

where ‖ · ‖∞ is the `∞ norm on the vectorization of its argument and ZX,w,γ normalizes the
probability.

Now the corresponding Data Entropy Loss for `∞ defense is:

Lde,∞(w;X,Y) = Z−1
X,w,γ

∫
X′
L(X ′;Y,w) exp

(
L(X ′;Y,w)− γ

2
‖X −X ′‖∞

)
dX ′

and our new objective is to minimize this augmented objective function Lde,∞(w;X,Y), which
resembles a averaged version of the loss function with a exponential `∞ kernel along the data
dimension which accounts for points in the `∞ neighborhood of X which have high loss. The SGD
update can be designed as follows:

∇wLde,∞(w;X,Y) = ∇wEX′∼p(X′)

[
L(w;X ′, Y)

]
=⇒ w+ = w − η∇wLde,∞(w;X,Y)

where the expectation over p(X ′) is computed by using samples generated via Langevin Dynamics:

X ′t+1 = X ′t + η∇X′ log p(X ′t) +
√

2ηN (0, I)

Plugging in the distribution in Eq.12 the update rule for sampling X ′:

X ′t+1 = X ′t + η∇X′

(
L(X ′t;Y,w)− γ

2
‖X −X ′‖∞

)
+
√

2ηN (0, I)

= X ′ + η∇X′L(X ′t;Y,w) + γsign(Xi −X ′ti) · 1 +
√

2ηN (0, I) (13)

where i = arg maxj |Xj − X ′tj | and j scans all elements of the tensors X,X ′t and 1j = δi,j .
Note that the third step in the update rule navigates the updates X ′t+1 to lie in the immediate `∞
neighborhood of X , which replaces the sgn(∇Lx(X;Y,w)) update in IFGS (refer Appendix C in
supplement).

6

Table 1: Training time comparison in seconds.
SGD Entropy SGD `2 PGD `∞ PGD `2 Data Entropy SGD `∞ Data Entropy SGD

MNIST 1101 1582 2989 3114 3017 3320
CIFAR10 6840 8321 14218 16985 16860 16745

4 Experiments

In this section we perform experiments on LetNet5 trained on MNIST dataset and VGG-11 on
CIFAR10. We also replicate all experiments on denser models such as ResNet18 in Appendix D of
supplement. We conduct our studies on six different classic as well as robust training algorithms:
SGD, Entropy SGD, `2 Data Entropy SGD, `∞ Data Entropy SGD, `2 PGD training, and `∞
PGD training to train LeNet5 and VGG-11 respectively, compare results and obtain accuracies for
classification with a range of adversarial samples corresponding to different ε-values for a given ∆p,ε

defined as ∆p,ε = {δ : ‖δ‖p ≤ ε}. The adversarial samples were generated using PGD [11] and
IFGS [27] attacks. Further architecture details are provided in Appendix D.

Generating adversarial samples: Attacks are generated according to a range of ε values, by using (i)
PGD [11] attack on `2-ball for values ε = {0, 0.33, 0.66, . . . 6.00} and (ii) FGSM attack [27] on `∞
ball ε = {0, 0.025, 0.05, . . . 0.5}. For CIFAR-10, the range of ε values using PGD attack on `2 ball
are in the range {0, 0.33, 0.66, . . . 4.00} and for FGSM attack on `∞ ball, ε = {0, 0.01, 0.02, . . . 0.1}.
Training algorithms: (1) SGD: We trained a LeNet5 for the MNIST dataset, setting batch size of
128, SGD optimizer using PyTorch framework with a learning rate of 0.1. We trained a VGG-11 for
the CIFAR10 dataset using the same settings as above. We obtained validation accuracy of 99.8% on
MNIST dataset and 98.48% on CIFAR10 dataset. These networks provides a baseline model against
a variety of adversarially trained networks. Next, we train both networks using (2) Entropy SGD,
with L = 1 langevin steps and γ = 10−4, batch size of 128 and learning rate of 0.1. Then we test out
the (3) PGD training trained with (i) `2 attack ball with ε = 3 (ii) `∞ attack ball with ε = 0.3.

Lastly we test the performance of the algorithms described in this paper, i.e. (3) Data-Entropy SGD
designed for (i) `2 attacks with L = 20 langevin steps, γ = 10−5 and δi is a random normally
distributed vector with ‖δi‖2 ≤ 3 for initialization in step 4 of Algorithm 1 (ii) `∞ attacks with
L = 20 Langevin steps, γ = 10−5 with ‖δi‖∞ ≤ 0.3 for initialization. All algorithms are trained for
50 epochs. The later two broad approaches for robust training also used learning rate of 0.1 and all
algorithms were trained for 50 epochs.

MNIST: The results for MNIST dataset were generated using Intel(R) Xeon(R) W-2195 CPU @
2.30GHz Lambda cluster with 18 cores with NVIDIA TITAN GPU and PyTorch version 1.4.0. We
demonstrate our results in Figure 1. As can be seen, for `2 attack , `2 Data Entropy SGD trumps `2
PGD-SGD (Fig.1 (a)) in terms of robustness of classification accuracy against `2 attack at radius
`2 = 3. Note that fairness of comparison between `2 and `∞ trained approaches largely relies on
picking perturbation radii which produce comparable errors in classification.

Similarly, Data Entropy SGD (`∞) trumps PGD-SGD (`∞) (Fig.1 (b)) at larger attack radii in terms
of robustness of classification accuracy against `∞ attack. In Appendix D Figure 4 we show the
class-wise performance of these approaches classwise for digits in MNIST and demonstrate an attack
setting at which the models trained with naive SGD and Entropy SGD mispredict the target labels,
whereas Data Entropy SGD (DESGD) predicts the correct target labels for those adversarial samples.

CIFAR10: The experiments for CIFAR10 dataset were conducted on Intel(R) Core(TM) i9-7920X
CPU @ 2.90GHz lambda cluster with 4 GeForce GTX 1080 Ti GPUs. We test the robustness of all
six networks trained on the CIFAR10 dataset. We demonstrate results in Fig. 2. As can be seen,
Data Entropy variants outperform its competitors. As can be seen, for `2 attack , `2 Data Entropy
SGD trumps `2 PGD-SGD (Fig.2 (a)) in terms of robustness of classification accuracy against `2
attack. Similarly, `∞ Data Entropy SGD trumps `∞ PGD-SGD (Fig.2 (b)) in terms of robustness of
classification accuracy against `∞ attacks.

In Table 1 we tabulate the training times required for all algorithms. As can be seen the running times
for Data Entropy SGD are more comparable to the PGD based training approaches. All additional
experiments can be found in Appendix D.

7

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Epsilon (ε)

A
cc

ur
ac

y

SGD
Entropy-SGD

PGD(`2)
PGD(`∞)

DE-SGD(`2)
DE-SGD(`∞)

(a) `2 bounded adversary

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Epsilon (ε)

A
cc

ur
ac

y

SGD
Entropy-SGD

PGD(`2)
PGD(`∞)

DE-SGD(`2)
DE-SGD(`∞)

(b) `∞ bounded adversary

Figure 1: Overall accuracy on MNIST dataset with following networks : 1) SGD 2) entropy-SGD
3) `2 PGD training 4) `∞ PGD training 5) DE-SGD(`2) training 6) DE-SGD(`∞) training. The
networks are attacked by (a) `2-bound and (b) `∞ bound adversaries with various ε values.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

Epsilon (ε)

A
cc

ur
ac

y

SGD
Entropy-SGD

PGD(`2)
PGD(`∞)

DE-SGD(`2)
DE-SGD(`∞)

(a) `2 bounded adversary

0 0.02 0.04 0.06 0.08 0.1

0

0.2

0.4

0.6

0.8

Epsilon (ε)

A
cc

ur
ac

y
SGD

Entropy-SGD
PGD(`2)
PGD(`∞)

DE-SGD(`2)
DE-SGD(`∞)

(b) `∞ bounded adversary

Figure 2: Overall accuracy on CIFAR-10 dataset with VGG-11 network variants : 1) SGD 2) entropy-
SGD 3) `2 PGD training 4) `∞ PGD training 5) DE-SGD(`2) training 6) DE-SGD(`∞) training. The
networks are attacked by (a) `2-bound and (b) `∞ adversaries with various ε values.

5 Conclusions and discussion

We propose a new algorithm for robustifying neural networks against adversarial attacks. We
demonstrate comparable, and in certain regimes, superlative performance of our algorithm (DESGD)
against state of art. Future directions involve a thorough theoretical analysis of our proposed algorithm.
We also plan to test out this approach over larger datasets, such as ImageNet.

6 Broader impact

The vulnerability of modern machine learning systems to adversarial attacks is a major impediment
to their widespread deployment in safety-critical real world applications (such as self-driving cars).
Therefore, it is imperative to develop increasingly more effective and robust machine learning models.
Our approach in this paper constitutes an addition to the growing body of work in this literature that
addresses this imperative.

8

References
[1] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[2] W. Zhang, Q. Sheng, A. Alhazmi, and C. Li. Adversarial attacks on deep-learning models in natural
language processing: A survey. ACM Transactions on Intelligent Systems and Technology (TIST), 11(3):1–
41, 2020.

[3] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner, and W. Zhou. Hidden voice
commands. In 25th {USENIX} Security Symposium ({USENIX} Security 16), pages 513–530, 2016.

[4] J. Tang, X. Du, X. He, F. Yuan, Q. Tian, and T. Chua. Adversarial training towards robust multimedia
recommender system. IEEE Transactions on Knowledge and Data Engineering, 2019.

[5] P. Rota, E. Sangineto, V. Conotter, and C. Pramerdorfer. Bad teacher or unruly student: Can deep learning
say something in image forensics analysis? In 2016 23rd International Conference on Pattern Recognition
(ICPR), pages 2503–2508. IEEE, 2016.

[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[7] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. arXiv preprint arXiv:1605.07277, 2016.

[8] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine learning. Pattern
Recognition, 84:317–331, 2018.

[9] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli. Evasion
attacks against machine learning at test time. In Joint European conference on machine learning and
knowledge discovery in databases, pages 387–402. Springer, 2013.

[10] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel.
Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.

[11] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and Adrian Vladu. Towards deep learning models resistant
to adversarial attacks. In International Conference on Learning Representations, 2018.

[12] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples, 2018.

[13] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana. Certified robustness to adversarial examples
with differential privacy. In 2019 IEEE Symposium on Security and Privacy (SP), pages 656–672. IEEE,
2019.

[14] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified adversarial robustness via randomized smoothing. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 1310–1320, Long
Beach, California, USA, 09–15 Jun 2019. PMLR.

[15] Hadi Salman, Jerry Li, Ilya Razenshteyn, Pengchuan Zhang, Huan Zhang, Sebastien Bubeck, and Greg
Yang. Provably robust deep learning via adversarially trained smoothed classifiers. In Advances in Neural
Information Processing Systems, pages 11289–11300, 2019.

[16] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent into wide
valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124018, 2019.

[17] M. Welling and Y. Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of
the 28th International Conference on Machine Learning (ICML), pages 681–688, 2011.

[18] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training, 2020.

[19] K. Ren, T. Zheng, Z. Qin, and X. Liu. Adversarial attacks and defenses in deep learning. Engineering,
2020.

[20] Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. 2017 IEEE
Symposium on Security and Privacy (SP), 2017.

[21] Sumanth Dathathri, Stephan Zheng, Sicun Gao, and RM Murray. Measuring the Robustness of Neural
Networks via Minimal Adversarial Examples. In NeurIPS-W, volume 35, 2017.

[22] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
In ICLR, 2015.

[23] Ian J. Goodfellow. Defense against the dark arts: An overview of adversarial example security research
and future research directions. arxiv preprint, abs/1806.04169, 2018.

9

[24] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[25] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal adversar-
ial perturbations. CVPR, 2017.

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[27] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. arXiv
preprint arXiv:1607.02533, 2016.

[28] Y. Dong, F. Liao, T. Pang, H Su, J. Zhu, X. Hu, and J. Li. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9185–9193, 2018.

[29] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In Advances in Neural
Information Processing Systems, pages 3353–3364, 2019.

[30] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified adversarial robustness with additive
gaussian noise. arXiv preprint arXiv:1809.03113, 2018.

[31] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

[32] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint
arXiv:1609.04836, 2016.

[33] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. In Advances in Neural Information Processing Systems, pages 6389–6399, 2018.

10

A Recap: Entropy SGD

Algorithm 2 Entropy SGD

1: Input: X = [XB1
, XB2

. . . XBJ], f, η, η′, w = w0, γ, α, ε
2: for t = 0, · · ·T − 1 do
3: for j = 1, · · · J do
4: w′0 ← wt, µ0 ← wt {Repeat inner loop for all training batches j}
5: for k = 0, · · · ,K − 1 do
6: dw′k ← 1

nj

∑nj
i=1−∇w=wkL(f(w;xi)) + γ(wk − w′k) {∀xi ∈ XBj}

7: w′k+1 ← w′k + η′dw′k +
√

2η′εN (0, 1) {Langevin update}
8: µk ← (1− α)µk + αw′k+1

9: end for
10: µt ← µK

11: wt+1 ← wt − ηγ(wt − µt) {Repeat outer loop step for all training batches j}
12: end for
13: end for
14: Output ŵ ← wT

In [16] authors claim that neural networks that favor wide local minima have better generalization properties, in
terms of perturbations to data, weights as well as activations. Mathematically, the formulation in Entropy SGD
can be summarized as follows. A basic way to model the distribution of the weights of the neural network is
using a Gibbs distribution of the form:

p(w;X,Y, β) = Z−1
X,β exp

(
−βL(w;X,Y)

)
When β →∞, this distribution concentrates at the global (if unique) minimizer of L(w∗;X,Y). A modified
Gibbs distribution, with an additional smoothing parameter is introduced, which assumes the form:

p(w′;w,X, Y, β = 1, γ) = Z−1
w,X,γ exp

(
−L(w′;X,Y)− γ

2
‖w′ − w‖22

)
(14)

where Zw,X,γ normalizes the probability.

Here γ controls the width of the valley; if γ →∞, the sampling is sharp, and this corresponds to no smoothing
effect, meanwhile γ → 0 corresponds to a uniform contribution from all points in the loss manifold. The
standard objective is:

min
w
L(w;X,Y) := min

w
− log

(
exp

(
−L(w;X,Y)

))
= min

w
− log

(∫
w′

exp
(
−L(w′;X,Y)

)
δ(w − w′)dw′

)
which can be seen as a sharp sampling of the loss function. Now, if one defined the Local Entropy as:

Lent(w;X,Y) = − log(Zw,X,Y,γ)

= − log

(∫
w′

exp

(
−L(w′;X,Y)− γ

2
‖w − w′‖22

)
dw′
)

our new objective is to minimize this augmented objective function Lent(w;X,Y), which resembles a smoothed
version of the loss function with a Gaussian kernel. The SGD update can be designed as follows:

∇wLent(w;X,Y) = −∇w(log(Zw,X,Y,γ))

= Z−1
w,X,γ∇w(Zw,X,γ)

= Z−1
w,X,γ

(∫
w′

exp

(
−L(w′;X,Y)− γ

2
‖w − w′‖22

)
· γ(w − w′)dw′

)

=

∫
w′
p(w′;w,X, Y, γ) · γ(w − w′)dw′

= Ew′∼p(w′)

[
γ(w − w′)

]
Then, using this gradient, the SGD update for a given batch is designed as:

w+ = w − η∇wLent(w;X,Y)

11

Algorithm 3 PGD SGD

1: Input: [XB1 , XB2 . . . XBJ], f, η, η′, w = w0, ε
2: for t = 0, · · ·T − 1 do
3: for j = 1, · · · J do
4: x′0 ← x {∀x ∈ XBj}
5: for k = 0, · · · ,K − 1 do
6: dx′k ← 1

n

∑n
i=1∇x=xkL(f(wt;x))

7: x′k+1 ← x′k + η′dx′k {Gradient ascent}
8: projectx+∆(x′, ε)
9: end for

10: µt ← L(wt, x′K) {batch loss for XBj}
11: dLt ← ∇wµt {gradient of batch loss}
12: wt+1 ← wt − ηdLt
13: end for
14: end for
15: Output ŵ ← wT

This gradient ideally requires computation over the entire training set at once; however can be extended to a batch-
wise update rule by borrowing key findings from [17]. This expectation for the full gradient is computationally
intractable, however, Euler discretization of Langevin Stochastic Differential Equation, it can be approximated
fairly well as

w′t+1 = w′t + ηt∇w′ log p(w′t) +
√

2ηN (0, I)

such that after large enough amount of iterations w+ → w∞ then w∞ ∼ p(w′). One can estimate
Ew′∼p(w′)

[
γ(w − w′)

]
by averaging over many such iterates from this process. This result is stated as it

is from [16]: Ew′∼p(w′)[g(w′)] =
∑
t ηtg(w

′
t)∑

t ηt
. This leads to the algorithm shown in Algorithm 2. One can

further accrue exponentially decaying weighted averaging of g(w′t) to estimate Ew′∼p(w′)[g(w′)]. This entire
procedure is described in Algorithm 2.

This algorithm is then further guaranteed to find wide minima neighborhoods of w by design, as sketched out by
the proofs in [16].

B Stochastic Gradient Langevin Dynamics

Stochastic Gradient Langevin Dynamics combines techniques of Stochastic Gradient Descent and Langevin
Dynamics [17]. Given a probability distribution π = p(θ;X), the following update rule allows us to sample
from the distribution π:

θt+1 = θt + η∇θp(θt;X) + 2
√
η′ε (15)

where η′ is step size and ε is normally distributed. Then, as t→∞, θ ∼ π.

While this update rule in itself suffices, if the parameters are conditioned on a a training sample set X , which is
typically large, the gradient term in Eq. 15 is expensive to compute. [17] shows that the following batch-wise
update rule:

θt+1 = θt + η∇θp(θt;XBj) + 2
√
η′ε

suffices to produce a good approximation to the samples θt→∞ ∼ π. In Algorithm 1, θ is the set of perturbed
points X ′. In each internal iteration, we look at subset of trainable parameters X ′Bj . We update the estimate for
X ′Bj by only considering data-points XBj at a time. In the current formulation the set of iterable parameters
X ′Bj only ’see’ a single batch of data XBj ; a better estimate would require X ′Bj to be updated by iteratively
over all possible batches XBk , k = 1, 2....J . However in practice we observe that just using the corresponding
batch XBk=j suffices. In future work, we will explore the theoretical implications of this algorithmic design.

C Universal defense: PGD-SGD and IFGS

In Algorithm 3 we describe the PGD-SGD algorithm. In [11] authors demonstrate that PGD based-attack is the
best possible attack that can be given for a given network and dataset combination. Theoretically,

x̄worst = arg max
δ∈∆p

L(f(ŵ;x+ δ), y) (16)

12

05 · 10−20.1 0.15 0.2 0.25 0.3 0.35 0.4

0

0.2

0.4

0.6

0.8

Epsilon (ε)

A
cc

ur
ac

y

SGD
PGD(`∞)

DE-SGD(`∞)

Figure 3: Test accuracy under `∞ adversarial attack on ResNet18 models trained on CIFAR10.

and if this maximization can be solved tractably, then a network trained with the following min-max formulation
is said to be robust:

min
w

max
δ∈∆p

L(f(ŵ;X + δ, Y), Y) (17)

Furthermore they show that first order based gradient approaches, such as SGD, are sufficient to suitably optimize
the inner maximization over the perturbed dataset. This can be obtained using the following gradient ascent
update rule:

X ′ = X ′ + η′∇X′∈X+δL(f(w,X ′ + δ;Y), Y)

(see also Step 7 of Algorithm 3). Note that when ∆p = ∆2, this projection rule represents a noise-less version
of the update rule in DESGD (see Algorithm 1, line 8).

Iterative Fast Gradient Sign (IFGS) method effectively captures a similar projection based approach which
performs an update within an `∞ ball. This update is given by:

X ′ = X ′ + η′sign(∇X′L(f(w,X ′ + δ;Y), Y))

Note that this update rule constructs an adversarial example within `∞-ball, during the training procedure.2

Meanwhile, given our proposed adversarial example sampling criterion in Assumption 3, our update rule is
slightly different (see also Eq. 13).

D Additional experiments and details

We provide additional details as well as experiments to supplement those in Section 4. We run all experiments
on the MNIST dataset using the LeNet5 network configuration. This network consists of three convolutional
layers with two max-pooling layers interspersed, along with a final fully connected layer. The activations after
each convolution are followed with a ReLU activation. The output of the final fully connected layer is followed
by a sigmoid (softmax) activation.

In Figure 4 we show the predictions of various different networks on adversarial examples generated on MNIST.
We can see that SGD and Entropy SGD trained networks are incapable of producing the correct label for this
example (they both predict “1" for true label “2"), where as PGD-retrained as well as DESGD produces the
correct label, which is “2", even under significant data corruptions.

The experiments on CIFAR10 datasets are done using two different networks. Experiments on VGG-11 are
shown in the main paper (Section 4). We also show additional experiments on ResNet18 network below. The
configuration of VGG-11 is as follows. This architecture consists of eight convolutional layers, five maxpooling
operations, interspersed with ReLU activation. This is followed by three fully-connected layers and softmax
operation. Similarly ResNet18 consists of 18 layers and 5 residual blocks.

We provide experimental results on ResNet18 trained on CIFAR10 dataset in Figure 3. We compare between
three approaches (i) standard network trained using SGD, (ii) adversarially trained network using FGSM, (iii) the
`∞ formulation of DESGD, using update rule Eq. 13. We demonstrate that out proposed approach, generalizes
well even on ResNet type configurations. For the ResNet experiment, we use the following settings for each
algorithm: (i) SGD, learning rate=0.05, momentum=0.9, 50 epochs (ii) PGD-SGD (`∞), learning rate=0.1, 20
epochs and ε = 0.2, 10 inner iterations (iii) DESGD (`∞) with step size 0.01, learning rate-0.1, initial point δ,
such that ‖X ′0Bj −XBj‖∞ = 0.2, 10 inner iterations with step size 0.01, γ = 10−7. Note that the performance
of all networks may be further improved by doing a better hyper-parameter search.

For the attack, we used used range of perturbations ε∞ = [0, 0.4], with a step of 0.05. The attacks were
generated using IFGS method.

2Note that we refer to IFGS as PGD-SGD(`∞), interchangeably in this paper.

13

(a) SGD model

(b) Entropy SGD model

(c) Data Entropy SGD `2 model

(d) PGD `2-retrained

(e) PGD `∞- retrained

Figure 4: [MNIST] SGD, Entropy-SGD, Data Entropy-SGD (`2 model), PGD `2retrained and PGD
`∞ retrained model performance on clean and adversarial samples. We display the class-probability
corresponding to the class which has highest probability. The examples in (a) and (b) are misclassified,
however (c)-(e) are correctly classified.

14

	1 Introduction
	2 Relation to Prior Work
	3 Problem Formulation
	4 Experiments
	5 Conclusions and discussion
	6 Broader impact
	A Recap: Entropy SGD
	B Stochastic Gradient Langevin Dynamics
	C Universal defense: PGD-SGD and IFGS
	D Additional experiments and details

