
SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 1

ASSURE: RTL Locking Against an
Untrusted Foundry

Christian Pilato, Senior Member, IEEE, Animesh Basak Chowdhury,
Donatella Sciuto, Fellow, IEEE, Siddharth Garg, Member, IEEE, Ramesh Karri, Fellow, IEEE

Abstract—Semiconductor design companies are integrating
proprietary intellectual property (IP) blocks to build custom
integrated circuits (IC) and fabricate them in a third-party
foundry. Unauthorized IC copies cost these companies billions of
dollars annually. While several methods have been proposed for
hardware IP obfuscation, they operate on the gate-level netlist,
i.e., after the synthesis tools embed the semantic information into
the netlist. We propose ASSURE to protect hardware IP modules
operating on the register-transfer level (RTL) description. The
RTL approach has three advantages: (i) it allows designers
to obfuscate IP cores generated with many different methods
(e.g., hardware generators, high-level synthesis tools, and pre-
existing IPs). (ii) it obfuscates the semantics of an IC before
logic synthesis; (iii) it does not require modifications to EDA
flows. We perform a cost and security assessment of ASSURE.

I. INTRODUCTION

The cost of IC manufacturing has increased 5ˆ when
scaling from 90nm to 7nm [1]. An increasing number of design
houses are now fab-less and outsource the fabrication to a
third-party foundry [2], [3]. This reduces the cost of operating
expensive foundries but raises security issues. If a rogue in
the third-party foundry has access to the design files, they can
reverse engineer the IC functionality to steal the Intellectual
Property (IP), causing economic harm to the design house [4].

Fig. 1 is a fabless IC design flow with third-party man-
ufacturing. The flow accepts the specification in a hardware
description language (HDL). Designers create the components
either manually or generate them automatically, and integrate
them into a hardware description at the register-transfer level
(RTL). Given a technology library (i.e., a description of
gates in the target technology) and a set of constraints, logic
synthesis elaborates the RTL into a gate-level netlist. Logic
synthesis applies optimizations to reduce area and improve
timing. While RTL descriptions are hard to match against high-
level specifications [5], they are used as a golden reference
during synthesis to verify each step does not introduce any
error. Physical design generates the layout files that are sent
to the foundry for fabrication of ICs that are then returned to
the design house for packaging and testing.

Semiconductor companies are developing methods for IP
obfuscation. In split manufacturing, the design house splits the

Manuscript received October 11, 2020.
C. Pilato and D. Sciuto are with the Dipartimento di Elettronica, In-

formazione e Bioingegneria, Politecnico di Milano, Milano, Italy (chris-
tian.pilato@polimi.it, donatella.sciuto@polimi.it).

A. B. Chowdhury, S. Garg and R. Karri are with the NYU Center for
Cybersecurity (http://cyber.nyu.edu), New York University, New York, NY,
USA (abc586@nyu.edu, garg@nyu.edu, rkarri@nyu.edu).

Fa
br

ic
at

io
n

Design House FoundryHigh-Level
Synthesis

Hardware
Generators

Manual
Design

Ph
ys

ic
al

 D
es

ig
n

Gate-level
Netlist

IC Layout
Files

High-level
Spec.

Params ASSURE

Sy
st

em
 D

es
ig

n

RTL
Spec.

High-Level
Descriptions

Hardware
Descriptions Formal Verification

Tech. Library

L
og

ic
 S

yn
th

es
is

Pre-existing
IP Chip

Fig. 1: State-of-the-art IC design flow. Designers create RTL
description of an IC either by manual design, or by using HLS
tools, or by using hardware generators. The netlist after more
processing steps is sent to a third-party foundry. ASSURE
locks an RTL description before logic synthesis.

IC into parts that are fabricated by different foundries [6]. An
attacker must access all parts to recover the IC. Watermarking
hides a signature inside the circuit, which is later verified dur-
ing litigation [7]. Finally, designers apply logic locking [8] to
prevent unauthorized copying and thwart reverse-engineering.
They introduce extra gates controlled by a key that is kept
secret from the foundry. They activate the IC functionality by
installing the key into a tamper-proof memory after fabrication.

A. Related Work

Prior approaches lock gate-level netlists after logic opti-
mizations have been applied [9]. Gate-level locking can not
obfuscate all the semantic information because logic synthesis
and optimizations absorb many of them into the netlist before
the locking step. For example, constant propagation absorbs
the constants into the netlist. When the attackers have access
to an activated IC (i.e. the oracle), they use Boolean Satis-
fiability (SAT)-based attacks to recover the key [10], [11].
Several solutions have been proposed to thwart SAT-based
attacks [12], [13]. Attacks on SFLL have been reported when
the “protected” functional inputs are at a certain (Hamming)
distance from the key [14], [15].

Recently, alternative high-level locking methods have been
proposed [16], [17], [18], [19]. These methods obfuscate the
semantic information before logic optimizations embed them
into the netlist. TAO applies obfuscations during HLS [16].
HLS-based SFLL obfuscation has been proposed in [17]. Both
approaches require access to the HLS source code to integrate
the obfuscations and cannot be used to obfuscate existing IPs.

Protecting a design at the register-transfer level (RTL) is
a compromise that ASSURE takes. Most of the semantic
information (e.g., constants, operations and control flows) is

ar
X

iv
:2

01
0.

05
34

4v
1

 [
cs

.C
R

]
 1

1
O

ct
 2

02
0

http://cyber.nyu.edu

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 2

still present in the RTL and obfuscations can be applied
to existing RTL IPs. To obfuscate the semantic informa-
tion, ASSURE leverages prior work on software program
obfuscation [20], [21], [22]. They obfuscate data structures,
control flows and constants through code transformations or
by loading information from memory at runtime.

B. Paper Contributions

ASSURE RTL obfuscation uses three techniques namely
obfuscating constants, arithmetic operations, and control
branches. These are provably secure and compatible with
industrial design flows. The paper makes three contributions:
1) an RTL-to-RTL translation for IP obfuscation (Section III).
2) three obfuscations (constant, operations, and branch) with

proofs of security (Section III-B).
3) reports on security (Section IV-B) and related overhead

(Section IV-C).

II. THREAT MODEL: UNTRUSTED FOUNDRY

The state-of-art in logic locking considers two broad cate-
gories of threat models: netlist-only and oracle-guided [8],
[23]. In both settings, the attacker has access to a locked
netlist, but in the latter, also has access to an unlocked IC
(oracle). The oracle-guided model is relevant in high-volume
commercial fabrication where it is reasonable to assume that
the attacker can purchase an unlocked IC in the market. The
nelist-only model, one the other hand, captures low-volume
settings, for instance, in the design of future defense systems
with unique hardware requirements [24], where the attacker
would not reasonably be able to access a working copy of the
IC. For this reason, it is also called oracle-less model. In this
work, we consider the oracle-less model.

Consider, for instance, a fabless defense contractor that
outsources an IC to an untrusted foundry for fabrication.
The untrusted foundry has access to the layout files of the
design and can reverse engineer a netlist and even extract the
corresponding RTL [25]. However, since the foundry produces
the first ever batch of an IC design (in some cases the only
one), an activated chip is not available through any other
means. Attacks that rely on knowledge of an IC’s true I/O
behaviour, for instance the SAT attack, are therefore out-of-
scope. However, the attacker can still rely on a range of netlist-
only attacks, desynthesis [26], redundancy identification [27]
and ML-guided structural and functional analysis [28], [29],
for instance, to reverse engineer the locked netlist. In the
following, we prove the resilience of ASSURE obfuscation
to not only these three attacks, but also that ASSURE locked
netlists reveal no information about the design other than any
prior knowledge that the designer might have about the design.

III. OVERVIEW OF ASSURE

Fig. 2 shows the ASSURE flow. Given an RTL design D and
a set of obfuscation parameters, ASSURE generates a design
D˚ and a key K˚r such that D˚ matches the functionality
of D only when K˚r is applied. ASSURE is a technology-
independent and operates on the RTL after system integration
but before logic synthesis. ASSURE obfuscates existing IPs

ASSURE

…01010100101010111 …01001111001

Obfuscation points,
Reset/update processes,
Signal bitwidths

HDL
Parser AST AST

analysis

AST
elaboration

(constant, operations, and
branch protection)

AST RTL
generation

Locked RTL
Design (D*)

Locking
Key K

Input
Key

Maximum number of key bits,
Modules to obfuscate

1 2

3

4

Input RTL
Design (D)

Locking
parameters

Fig. 2: Organization of ASSURE.

and those generated with commercial HLS tools. ASSURE
obfuscates the semantic information in an RTL design us-
ing approaches used in program obfuscation to protect the
software IP [20], [22]. ASSURE obfuscates the RTL by
adding in opaque predicates such that the evaluation of the
opaque predicates depends on the locking key; their values
are known to the designer during obfuscation, but unknown
to the untrusted foundry. ASSURE obfuscates three semantic
elements useful to replicate function of an IP:
‚ constants contain sensitive information in the computation

(e.g., filter coefficients).
‚ operations determine functionality.
‚ branches define the execution flow (i.e., which operations

are executed under conditions).
ASSURE parses the input HDL and creates the abstract

syntax tree (AST) – step 1 . It then analyzes the AST to
select the semantic elements to lock (step 2) and obfus-
cates them (AST elaboration – step 3). The RTL generation
phase (step 4) produces the output RTL design that has the
same external interface as the original module, except for an
additional input port that is connected to the place where
K˚r is stored. ASSURE starts from a synthesizable IP and
modifies its description, it fits with existing EDA flows and
same constraints as the original, including tools to verify that
resulting RTL is equivalent to the original design when the
correct key is used and to verify that it is not equivalent to
the original when an incorrect key is used.

The key idea of ASSURE is that the functionality of D˚ is
much harder to understand without the parameter K˚r . If the
attackers apply a key different from K˚r to D˚, they obtain
plausible but wrong circuits, indistinguishable from the correct
one. These variants are indistinguishable from one another
without a-priori knowledge of the design.

A. ASSURE Obfuscation Flow

To generate an obfuscated RTL design, we must match
the requirements of the IP design with the constraints of
the technology for storing the key (e.g., maximum size of
the tamper-proof memory). On one hand, the number of bits
needed to obfuscate the semantics of an RTL design depends
on the complexity of the algorithm to protect. On the other
hand, the maximum number of key bits that can be used by
ASSURE (Kmax) is a design constraint that depends on the
technology for storing them in the circuit. ASSURE analyzes

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 3

Algorithm 1: ASSURE obfuscation.
1 Procedure ObfuscateModule(ASTm, K˚

r , Kmax)
Data: ASTm is the AST of the module m to obfuscate
Data: K˚

r is the current locking key
Data: Kmax is the maximum number of key bits to use
Result: AST˚

m is the obfuscated AST of the module m
Result: K˚

r is the updated locking key
2 BlackListÐ CreateBlackList(ASTm);
3 AST˚

m Ð BlackList;
4 ObfElemÐ DepthFirstAST(ASTm) z BlackList;
5 foreach el P ObfElem do
6 bel Ð BitReq(el);
7 if KeyLength(K˚

r)`bel ą Kmax then
8 AST˚

m Ð AST˚
m Y el;

9 else
10 Kel Ð GetObfuscationKey(el);
11 AST˚

m Ð AST˚
mY Obfuscate(el, Kel);

12 K˚
r Ð K˚

r YKel;

13 return tAST˚
m,K˚

r u

the input design to identify which modules and which circuit
elements in modules must be protected. First, ASSURE does
depth-first analysis of the design to uniquify the module
hierarchy and creates a list of modules to process. In this way,
ASSURE hides the semantics of the different modules so that
extracting knowledge from one instance does not necessarily
leak information on all modules of the same type.

After uniquifying the design, ASSURE analyzes the AST
of each module with Algorithm 1 starting from the innermost
ones. Given a hardware module, ASSURE first creates a “black
list” of the elements that must be excluded from obfuscation
(line 2). For example, the black list contains elements inside
reset and update processes or loop induction variables (see
Section III-B). The designer can also annotate the code to
specify that specific regions or modules must be excluded from
obfuscation (e.g., I/O processes or publicly-available IPs).
The black-list elements are added unchanged to the output
AST (line 3). Finally, ASSURE determines the list of AST
elements to obfuscate (line 4) and process them (lines 5-12).
For each element, it computes the number of bits required for
obfuscation (line 6) and check if there are enough remaining
key bits (line 7). If not, ASSURE does not obfuscate the
element (line 8). Indeed, reusing a key bit across multiple
elements as in [16] reduces the security strength of our scheme
because extracting the key value for one element invalidates
the obfuscation of all others sharing the same key bit. If the
obfuscation is possible (lines 9-12), ASSURE generates the
corresponding key bits (line 10). These bits depend on the
specific obfuscation technique to be applied to the element and
can be randomly generated, extracted from an input key (see
Fig. 2), or extracted from the element itself (see Section III-B).
ASSURE uses these key bits to obfuscate the element and the
result is added to the output AST (line 11). The key bits are
also added to the output locking key (line 12). We repeat this
procedure for all modules until the top, which will return the
AST of the entire design and the final key.

B. ASSURE Obfuscations and Security Proofs
Each of the ASSURE techniques targets an essential ele-

ment to protect and uses a distinct part of the r-bit locking

key K˚r , to create an opaque predicate1. In software, an opaque
predicate is a predicate for which the outcome is certainly
known by the programmer, but requires an evaluation at run
time [20]. We create hardware opaque predicates, for which
the outcome is determined by ASSURE (and so known) at
design time, but requires to provide the correct key at run
time. Any predicate involving the extra parameter K˚r meets
this requirement. Given a locking key K˚r , ASSURE generates
a circuit indistinguishable from the ones generated with any
other Kr ‰ K˚r when the attacker has no prior information
on the design.

We show that ASSURE techniques offer provable security
guarantees [26]. Consider an m-input n-output Boolean func-
tion F : X Ñ Y , where X P t0, 1um and Y P t0, 1un.
Obfuscation L receives Fq and an r-bit key K˚r and generates
a locked design Clock.
Definition An obfuscation scheme L is defined as:

LpFpXq,K˚r q “ ClockpX,Kq (1)

where the mapping Clock: X
Ś

K Ñ Y , and K P t0, 1ur

such that
‚ ClockpX,K˚r q = FK˚

r
pXq = FpXq

‚ ClockpX,Krq “ FKr pXq ‰ FpXq when Kr ‰ K˚r
This definition shows Clock can generate a family of Boolean

functions tFKru based on the r-bit key value Kr. The func-
tionality FpXq can only be unlocked uniquely with the correct
key K˚r . This is followed by a corollary about an important
characteristic of the family of Boolean functions that can be
generated by ClockpX,Kq.

Theorem 1. For an obfuscated netlist ClockpX,Kq created
using K˚r and FpXq, the unlocked functionalities FK1

and
FK2 (corresponding to keys K1 and K2) relate as follows:

FK1
‰ FK2

@K1,K2 P K,K1 ‰ K2 (2)

Proof. Let us first consider case (i) K1 “ K˚r . Therefore,
by the definition of RTL obfuscation scheme L, FK1

‰

FK2
@K2 P K,K1 ‰ K2. Now, for case (ii) K1 ‰ K˚r , there

exists a locked netlist C1lock, which locked FK1 using K1.
Therefore, FK2 = C1lockpX,K2q. By the definition of logic
locking security, FK2

‰ FK1
@K2 ‰ K1 in C1lockpX,Y q. �

We define P rClockpX,Kq|LpFpXq,K˚r qs as the probability
of obtaining the locked design ClockpX,Kq given that we
locked the Boolean function FpXq applying L with K˚r . We
propose the logic locking scheme L is secure under the oracle-
less threat model as follows:

Theorem 2. A logic locking scheme L for r-bit key K is
secure for a family of Boolean functions FKr of cardinality
2r if the following condition holds true:

P rClockpX,Kq|LpFpXq,K˚r qs “
P rClockpX,Kq|LpFKr pXq,Krqs@Kr ‰ K˚r ,FpXq ‰ FKr pXq

(3)

This theorem states that the locked netlist generated by apply-
ing logic locking scheme L is equally likely to be created by

1We use Verilog notation in the examples, but the approach is general.

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 4

a 5’b01010

b

+

b = a + k_c

k_c = 5’b01010

constant to
obfuscate

a k_c

b

+

b = a + 5’b01010

(a) Constant obfuscation

a b

C

+

b = (a-b)&{8{k_o} | (a+b)&{8{~k_o}

k_o = 1’b0

Randomly generated

a b

c

-

c = a + b

Operation to
obfuscate +

01k_o

(b) Operation obfuscation

a b

Test

>

if ((a<=b)^k_b) ...

k_b = 1’b1
Randomly generated

if (a > b) …

Branch to
obfuscate

a b

Test

<=
XOR

k_b

(c) Branch obfuscation

Fig. 3: Three ASSURE obfuscations. (a) Constant (b) Branch and (c) Operation. Each obfuscation uses a portion of the key.

765

770

orig c1 c2 c3 c4 c5735

740

des3

Ar
ea

 (
2) Obfuscated

Original
0

10

+1.351e5

orig c1 c2 c3 c4 c50

10

+1.349e5

rsa

Obfuscated
Original

Fig. 4: Area overhead for original and obfuscated variants of
benchmarks DES3 and RSA having different constants (c1 ´
c5).

a family of Boolean function FKr
pXq along with the original

Boolean function FpXq. We show that above two claims are
satisfied for all our obfuscation schemes and provide us a
security guarantee of 2r under the proposed threat model.

1) Constant Obfuscation: This obfuscation removes se-
lected constants and moves them into the locking key K as
shown in Fig. 3a. The original function is preserved only when
the key provides the correct constant values. Each constant bit
is a hardware-opaque predicate; the designer knows its value
and the circuit operation depends on it.
Example: Consider the RTL operation b = a +
5’b01010. To obfuscate the constant, we add a 5 bit
key K_c = 5’b01010. The RTL is rewritten as b =
a + K_c. The attacker has no extra information and 25

possibilities from which to guess the correct value. l

Hiding constant values allows designers to protect pro-
prietary information but also may prevent subsequent logic
optimizations (e.g., constant propagation and wire trimming).
However, several constants are unuseful and, in some cases,
problematic to protect. For example, reset values are set at
the beginning of the computation to a value that is usually
zero and then assigned with algorithm-related values. Also,
obfuscating reset polarity or clock sensitivity edges of the pro-
cesses introduces two problems: incorrect register inferencing,
which leads to synthesis issues of the obfuscated designs, and
incorrect reset process that easily leads to identify the correct
key value. In particular, if we apply obfuscation to the reset
processes and the attacker provides an incorrect key value, the
IC will be stalling in the reset state when it is supposed to be
in normal execution. So, we exclude constants related to reset
processes and sensitivity values for obfuscation.

Proof. The structure of the obfuscated circuit is independent
of the constant and, given an r-bit constant, the 2r values are
indistinguishable. The attacker cannot get insights on the con-

stants from the circuit structure. ASSURE constant obfuscation
satisfies the provable security criteria of logic locking L under
strong adversarial model as defined in Theorem 2.

Let us consider an RTL design of m inputs and n outputs
R : X Ñ Y , X P t0, 1um and uses an r-bit constant Corig.
ASSURE constant obfuscation converts the r-bit constant into
an r-bit key K˚r as a lock L and uses it to lock the design
ClockpX,Kq. The obfuscated RTL is depicted as follows:

Coutput “ K (4)

where, Coutput “ Corig, when K “ K˚r “ Corig.

Claim 1: Any unlocked constant CK1
and CK2

using r-bit
keys K1 and K2 are unique. (Theorem 1)

Proof. @K1 ‰ K2, K1,K2 P t0, 1u
r

ùñ CK1
‰ CK2

. �

Claim 2: A constant-obfuscated circuit with r-bit key K can
be generated from 2r possible constants (each of r-bit) with
equal probability, i.e. the following holds true.

P rCoutput|K “ K˚r s “ P rCoutput|K “ Krs

@Kr ‰ K˚r ;Kr P 2
r (5)

Proof. The probability of choosing Kr is uniform. So,
P[K “ K˚r] = P[K “ Kr], @Kr ‰ K˚r
ùñ P rCorigs “ P rCrs, Corig ‰ Cr,@Cr P t0, 1u

r. �

Claims 1 and 2 jointly denote that the constant obfuscated
by 2r unique constants are indistinguishable and can be un-
locked uniquely by the correct r-bit key. Constant obfuscation
hides the original constants with a security strength of 2r.

In Fig. 4, we show area overhead of DES3 and RSA, two
CEP benchmarks [30]. This experiment shows that constant
obfuscation generates indistinguishable circuits. We consider
a variable from each benchmark: sel round from DES3 and
modulus m1 len from RSA. We generate different circuits
by assigning different constants to the same variable. We
synthesize these circuit variants and obtain the area overhead.
Fig. 4 shows that every constant value (c1´c5) can be reverse
engineered from the synthesized circuit since each constant
directly maps to unique area overhead. On the contrary, the
area overhead of synthesized circuits remain the same after
obfuscation, and the obfuscated circuits are indistinguishable,
making it difficult for the attacker to recover the constant.

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 5

orig c1 c2 c3 c4 c5
710

720

730

740

des3

Ar
ea

 (
2) Obfuscated

Original

0

5 +1.3503e5

orig c1 c2 c3 c4 c50

5

10

15 +1.349e5

rsa

Obfuscated
Original

Fig. 5: Area overhead for original and obfuscated variants of
DES3 and RSA using different operators in the statement.

2) Operation Obfuscation: We generate a random key bit
and use it to multiplex the operation result with that from
another operation sharing the same inputs, as shown in Fig. 3b.
The mux selector is a hardware opaque predicate because the
designer knows its value and the mux propagates the correct
result only for the correct key bit. This is similar to that
proposed for C- and HLS obfuscation [16], [31].

Example: Let us obfuscate RTL operation c = a + b with
a dummy subtraction. We generate a key bit k_0 = 1’b0
and rewrite the RTL as c = k_o ? a - b : a + b. The
original function is selected for the correct k_o. l

The ternary operator is a simple representation of the
multiplexer, but it may impact code coverage. It introduces
extra branches in the circuit, where one of the paths is never
activated once the key is provided. To keep the same coverage
as the original design, we rewrite the mux selection as o =
in1 & k | in2 & „k.

Example: Operation c = a + b obfuscated as c =
k_o ? a - b : a + b can be written as c = (a -
b)&{8{k_o}} | (a + b)&{8{„k_o}}. This is equiva-
lent to ternary operation without branches, and same code
coverage. l

Since operations use the same inputs, ASSURE adds a
multiplexer at the output with its select connected to the
key bits. The multiplexer and the additional operator are area
overhead. The multiplexer impacts the critical path and the
additional operation introduces a delay when it takes more
time than the original one. We create a pool of alternatives
for each operation type. Original and dummy operations are
“balanced” in complexity to avoid increasing the area and
the critical path. Dummy operations are selected to avoid
structures the attacker can easily unlock. Incrementing a signal
by one cannot be obfuscated by a multiplication by one,
clearly a fake. Dummy operators are also selected to avoid
collisions. For example, adding a constant to a signal cannot
be obfuscated with a subtract because the wrong operation key
bit can activate the circuit when the attacker provides the two’s
complement of the constant.

Proof. Consider an RTL design with m inputs and n outputs,
with a mapping F : X Ñ Y , X P t0, 1um and with r
possible sites for operator obfuscation. ASSURE obfuscation
uses multiplexer (MUX) based locking L and uses an r-bit

key K˚r to lock the design ClockpX,Kq.

ClockpX,Kq “ FpX, k1, k2, .., krq
“ k1FpX, 0, k2, .., krq ` k1FpX, 1, k2, .., krq
“ K1

r FpX,K “ K1
rq

loooooooomoooooooon

FK1

`K2
r FpX,K “ K2

rq
loooooooomoooooooon

FK2

`..

..`K2r

r FpX,K “ K2r

r q
loooooooomoooooooon

FK2r

(6)

where, FK˚
r
pXq “ ClockpX,K “ K˚r q, K˚r is r-bit key. Each

location of operator obfuscation applies output of different
operations (one original and another fake) to a multiplexer.
The following equation holds true for operator obfuscation.

FpX, k1, .., ki “ 0, .., krq ‰ FpX, k1, .., ki “ 1, .., krq

@i P r1, rs (7)

Secondly, the sites of operation obfuscation are different. The
output of multiplexer using any key-bit value at one location
is independent of the choice made elsewhere. Given a key K,
the unlocked function of two circuits will be different if we
set same logic value at two different key-bit locations. For an
example K “ 1101, if one chooses bit location 2 and 4 and
flip them, i.e. K1 “ 1001,K2 “ 1100, then FK1 ‰ FK2 .

FpX, k1, .., ki “ ki, .., krq ‰ FpX, k1, .., kj “ kj , .., krq

@i, j P r1, rs, i ‰ j (8)

Claim 1: Any pair of unlocked circuit FK1
r

and FK2
r

using
r-bit keys K1

r and K2
r on MUX based obfuscated circuit

ClockpX,Kq are unique. (Theorem 1)

Proof. @K1
r ‰ K2

r , K1
r ,K

2
r P t0, 1u

r

ùñ Hamming distance pK1,K2q P r1, rs.
ùñ Eq. 7 + Eq. 8, FK1 ‰ FK2 �

Claim 2: MUX-based obfuscation with r-bit key K can be
generated from r different locations having 2r operations with
equal probability, i.e. following condition holds true.

P rClock|pFK˚
r
,K˚r qs “ P rClock|FKi

r
,Ki

rqs

@Ki
r ‰ K˚r ;FKi

r
‰ FK˚

r
; i P r1, 2rs

Proof. The probability of choosing Kr is uniform. Therefore,
P[K = K˚r] = P[K = Ki

r], @K
i
r ‰ K˚r

ùñ P rClockpX,K “ K˚r sq “ P rClockpX,K “ Ki
rqs

ùñ P rFK˚
r
s “ P rFKi

r
s “ 1

2r . �

Claims 1 and 2 show that operator obfuscation can generate
indistinguishable netlists.

In Fig. 5, we demonstrate area overhead of the two
benchmark circuits DES3 and RSA for operator obfuscation
supporting our claims generate indistinguishable circuits. We
consider a single operation from each benchmark: addition of
auxiliary input and round output from DES3, and subtraction
of modulus m1 len from a constant value in RSA. We generate
different circuits by replacing the original operators with other
operators. After synthesis, area overhead of these variants
(Fig. 5) are unique and can be reverse engineered. On the
contrary, the area overhead of synthesized circuits remain the
same after obfuscation and so the obfuscated circuits reveals
nothing about the original operator.

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 6

3) Branch Obfuscation: To hide which branch is taken after
the evaluation of an RTL condition, we obfuscate the test
with a key bit as cond_res‘k_b, as shown in Fig. 3c.
To maintain semantic equivalence, we negate the condition
to reproduce the correct control flow when k_b = 1’b1 be-
cause the XOR gate inverts the value of cond_res. We apply
De Morgan’s law to propagate the negation to disguise the
identification of the correct condition. The resulting predicate
is hardware-opaque because the designer knows which branch
is taken but this is unknown without the correct key bit.
Example: Let a > b be the RTL condition to obfuscate
with key k_b = 1’b1. We rewrite the condition as (a <=
b)^k_b, which is equivalent to the original one only for the
correct key bit. The attacker has no additional information to
infer if the original condition is > or <=. l

Obfuscating a branch introduces a 1-bit XOR gate, so
the area and delay effects are minimal. Similar to constant
obfuscation, branch obfuscation is applied only when relevant.
For example, we do not obfuscate reset and update processes.
We apply the same technique to ternary operators. When
these operators are RTL multiplexers, this technique thwarts
the data propagation between the inputs and the output. The
multiplexer propagates the correct value with the correct key.

Proof. For an m input RTL design, we have a control-
flow graph (CFG) GpC,Eq having |C| nodes and |E| edges.
We do a depth-first-traversal of the CFG and order the r
conditional nodes in the way they are visited. Let the ordered
set of conditional nodes be Corig “ tc1, c2, ...cru (r “ |C|).
ASSURE branch obfuscation xor Corig with r-bit key K˚r
as the logic locking scheme L and generate a locked design
GpCencrypted,Kq. For eg. if Corig “ tc1, c2, c3, c4u and
K “ 1101, then Cencrypted “ tc1, c2, c3, c4u. The locked
design, post branch-obfuscation is illustrated as follows.

GpCencrypted, E,Kq “ GpCorig ‘K
˚
r , Eq (9)

where GpCorig, Eq “ GpCencrypted,K “ K˚r , Eq “

GpCencrypted ‘K
˚
r , Eq.

Claim 1: Any unlocked CFG GpCK1
, Eq and GpCK2

, Eq
using r-bit keys K1 and K2 on XOR based encrypted CFG
GpCencrypted,K,Eq are unique. (Theorem 1)

Proof. @K1 ‰ K2, K1,K2 P t0, 1u
r

ùñ K1 ‘ Cencrypted ‰ K2 ‘ Cencrypted ùñ CK1
‰ CK2

.
ùñ GpCK1 , Eq ‰ GpCK2 , Eq. �

Claim 2: CFG obfuscated design GpCencrypted, E,Kq can be
generated from 2r possible combination of condition statuses
with equal probability, i.e. the following condition holds true.

P rGpCencrypted, E,Kq|GpCorig ‘K
˚
r , Eqs “

P rGpCencrypted, E,Kq|GpCr ‘Kr, Eqs

@Kr ‰ K˚r ;Corig ‰ Cr (10)

Proof. The probability of choosing Kr is uniform. So,
P rK “ K˚r s “ P rK “ Kr], @Kr ‰ K˚r ,Kr P 2

r

ùñ P rCencrypted‘ K˚r s “ P rCencrypted‘ Krs

ùñ P rCorigs “ P rCrs Corig ‰ Cr,
Cr “ tp1, p2, .., pi, .., pru, where pi P tci, ciu. �

970.0

orig c1 c2 c3 c4 c5
732.5

735.0

737.5

740.0

des3

Ar
ea

 (
2) Obfuscated

Original

orig c1 c2 c3 c4 c5

5

10

15
+1.349e5

rsa

Obfuscated
Original

Fig. 6: Area overhead for original and obfuscated variants of
benchmarks DES3 and RSA having different CFG flows.

Combining claims 1 and 2 shows that the encrypted CFGs are
indistinguishable for a family of 2r possible designs.

In Fig. 6, we report the area overhead of the two bench-
mark circuits DES3 and RSA in case of branch obfuscation
showing empirical evidence of our claim that obfuscated
circuits are indistinguishable. We identify five conditions from
each benchmark and generated five different variants, flipping
each condition at a time. After synthesizing the circuits, we
observed that area overhead is uniquely mapped to each variant
of the design. The conditions in the CFG can be easily
reverse engineered from the synthesized circuit and the flow
of design can be unlocked. On the contrary, the area overhead
of synthesized circuits remain the same after obfuscation,
indicating the obfuscated circuits reveal no information about
the control-flow of the circuit.

C. ASSURE Against Oracle-Less Attacks

We outlined provable security guarantees of ASSURE’s
RTL obfuscation technique via design indistinguishability. In
earlier section, we show that for n-bit obfuscation technique
there are 2n possible RTL designs which can generate same
obfuscated circuit. Using the proofs we have provided for
ASSURE’s obfuscation scheme, we show the resilience of
ASSURE against state-of-art oracle-less attacks.

1) Resilience against desynthesis and redundancy attacks:
Massad et al. [26] showed that greedy heuristics can recover
the key of an obfuscated circuit post logic synthesis. An
incorrect key assignment results in large redundancy in the cir-
cuit triggering additional optimizations when re-synthesized.
Similarly, Li et al. [27] propose an oracle-less attack using
concepts from VLSI testing. Incorrect key results in large logic
redundancy and most of stuck-at faults become untestable.
A correctly unlocked circuit however has high testability.
ASSURE obfuscates the design at the RTL followed by
synthesis. Since, the obfuscated RTL is equally likely to be
generated from 2n possible designs (for n-bit obfuscation),
logic synthesis using different keys on a reverse-engineered
obfuscated netlist reveals no information about the original
netlist. Hence, the area overhead for the correct and incorrect
keys are in same range (see Figs. 4, 5 and 6).

2) Resilience against ML-guided attacks: Chakraborty et
al. [28], [29] proposed oracle-less attacks on logic obfuscation
by exploiting the fact that obfuscation techniques hide the
functional by inserting XOR/XNOR gates and the process
leaves traces of the structural signature. The key gates are

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 7

TABLE I: Characteristics of the input RTL benchmarks.
Suite Design Modules Const Ops Branches Tot Bits Comb cells Seq cells Buf cells Inv cells # nets Area (µm2) Delay (ns)

CEP

AES 657 102,403 429 1 819,726 127667 8502 506 21812 136493 42854.69 136.75
DES3 11 4 3 775 898 2076 135 128 368 2448 736.96 192.28
DFT 211 447 151 132 8,697 118201 38521 9552 41320 158807 81865.94 336.72
FIR 5 10 24 0 344 820 439 49 225 1704 1129.36 377.76
IDFT 211 447 151 132 8,697 118154 38525 9576 41305 158722 81821.90 333.59
IIR 5 19 43 0 651 1378 648 72 367 2621 1679.72 464.82
MD5 2 150 50 1 4,533 4682 269 168 923 5756 1840.15 791.53
RSA 15 243 35 13 1,942 222026 57987 21808 66088 280222 134907.05 386.55
SHA256 3 159 36 2 4,992 5574 1040 243 1024 7532 3201.07 440.67

IWLS

MEM CTRL 27 492 442 160 2,096 4007 1051 120 1136 5183 2373.35 260.72
SASC 3 35 27 17 126 367 116 0 125 500 238.24 84.4
SIMPLE SPI 3 55 34 15 288 476 130 2 145 623 282.57 119.42
SS PCM 1 5 10 3 24 231 87 1 94 338 168.29 90.51
USB PHY 3 67 70 34 223 287 98 0 85 401 194.15 71.91

OpenCores
ETHMAC 66 487 1,217 218 3,849 34783 10545 2195 12021 45441 22453.76 190.44
I2C SLAVE 4 104 14 11 269 466 125 0 126 596 160.28 125.44
VGA LCD 16 123 310 56 885 54614 17052 4921 19228 71766 36095.90 224.67

OpenROAD
ARIANE ID 4 3,498 385 723 4,606 1993 378 96 559 2615 980.97 225.48
GCD 11 15 4 12 496 168 34 3 32 253 100.91 161.87
IBEX 15 14,740 5,815 6,330 26,885 12161 1864 978 2965 14379 5758.84 538.1

assumed inserted into the design before synthesis, and the
technology library and synthesis algorithm/tool are known.
Since the effect of logic optimizations remains local and
optimization rules are deterministic, ML models can recon-
struct the pre-synthesis design from an obfuscated circuit.
One can recover the original function by launching an ML-
guided removal attack on obfuscated RTL. In ASSURE, the
obfuscation logic does not depend solely on insertion of
XOR/XNORs. For example, in branch obfuscation, we do
logic inversion instead of simple XOR followed by NOT when
keybit=1. Recovering the original RTL from obfuscated RTL
is hard (see claim 2 of ASSURE branch obfuscation proof in
Section III-B3).

IV. EXPERIMENTAL VALIDATION OF ASSURE

A. Experimental Setup

We implemented ASSURE as a VerilogÑVerilog tool that
leverages Pyverilog [32], a Python-based hardware design
processing toolkit to manipulate RTL Verilog. Pyverilog parses
the input Verilog descriptions and creates the design AST.
ASSURE then manipulates the AST. Pyverilog is then used
to re the output Verilog description ready for logic synthesis.

We used ASSURE to protect several Verilog designs from
different sources2: the MIT-LL Common Evaluation Platform
(CEP) platform [30], the OpenROAD project [33], and the
OpenCores repository [34]. Four CEP benchmarks (DCT,
IDCT, FIR, IIR) are created with Spiral, a hardware genera-
tor [35]). Table I shows the characteristics of these benchmarks
in terms of number of hardware modules, constants, opera-
tions, and branches. This data also characterizes the function-
ality that needs obfuscation. The benchmarks are much larger
than those used by the gate-level logic locking experiments by
the community [9]. Differently from [16], ASSURE does not
require any modifications to tools and applies to pre-existing
industrial designs without access to an HLS tool. ASSURE
processes the Verilog RTL descriptions with no modifications.

2Supporting VHDL and SystemVerilog only requires proper HDL parsers.

We analyzed the ASSURE in terms of security (Sec-
tion IV-B) and overhead (Section IV-C). For each benchmark,
we created obfuscated variants using all techniques (ALL)
or one of constant (CONST), operation (OP), and branch
(BRANCH) obfuscations. We repeat experiments by constrain-
ing the number of key bits available: 25%, 50%, 75% or
100% and reported in Table I. The resulting design is then
identified by a combination of its name, the configuration,
and the number of key bits. For example, DFT-ALL-25
indicates obfuscation of the DFT benchmark, where all three
obfuscations are applied using 2,175 bits for obfuscation (25%
of 8,697) as follows: 38 for operations (25% of 151), 33 for
branches (25% of 132) and the rest (2,104) for constants.

B. Security Assessment

Since no activated IC is available to the attacker (see
Section II), we can only use methods based on the application
of random keys to analyze the security of our techniques for
thwarting reverse engineering of the IC functionality [10].
We base our experimental analysis on formal verification of
the locked design against the unprotected design. The goal
is twofold. First, we show that, when the correct key K˚r is
used, the unlocked circuit matches the original. We label this
experiment as CORRECTNESS. Second, we show that flipping
each single key bit induces at least a failing point (i.e., no
collision). This experiment demonstrates that each key bit has
an effect on the functionality of the circuit. We label this
experiment as KEY EFFECT. We show that there is no other
key that can activate the same IC. In this experiment, we also
aim at quantifying how the obfuscation techniques affect the
IC functionality when the attacker provides incorrect keys. We
compute the verification failure metric defined as follows:

F “
1

K
¨

K
ÿ

i“1

npFailingPointsqi
npTotalPointsq

(11)

This metric is the average fraction of verification points that
do not match when testing with different wrong keys. We
experimented using Synopsys Formality N-2017.09-SP3.

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 8

0

0.2

0.4

0.6

0.8

1.0

CEP-AES

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-DES3

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-DFT

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-FIR

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-IDFT

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

0

0.2

0.4

0.6

0.8

1.0

CEP-IIR

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-MD5

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-RSA

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-SHA256

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

IWLS-MEM_CTRL

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

0

0.2

0.4

0.6

0.8

1.0

IWLS-SASC

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

IWLS-SIMPLE_SPI

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

IWLS-SS_PCM

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

IWLS-USB_PHY

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

OPENCORES-ETHMAC

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

0

0.2

0.4

0.6

0.8

1.0

OPENCORES-I2C_SLAVE

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

OPENCORES-VGA_LCD

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

OPENROAD-ARIANE_ID

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

OPENROAD-GCD

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

OPENROAD-IBEX

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

Fig. 7: Verification failure metric in KEY-EFFECT experiments.

1) Correctness: We apply ASSURE several times, each
time with a random key to obfuscate operations and branches3.
We formally verified these designs against the original ones.
In all experiments, ASSURE generates circuits that match the
original design with the correct key.

2) Key Effect: Given a design obfuscated with an r-bit
key, we performed r experiments where in each of them with
flipped one and only one key bit with respect to the correct key.
In all cases, formal verification identifies at least one failing
point, showing that an incorrect key always alters the circuit
functionality. Also in this case, varying the locking key has no
effect since the failure is induced by the flipped bit (from cor-
rect to incorrect) and not its value. Fig. 7 shows the verification
failure metrics for each experiment. Results are not reported
for FIR-BRANCH-* and IIR-BRANCH-* because they have
no branches. AES, DFT, IDFT, and OPENCORES-ETHMAC
benchmarks have low values („10´5) because these bench-
marks have many verification points and only a small part
is failing. Operations and constants vitally impact the design
as obfuscating them induces more failing points. Increasing
the number of obfuscated operations reduces the metric. Since
obfuscation is performed using a depth-first analysis, the first
bits correspond to operations closer to the inputs. As the
analysis proceeds the obfuscation is closer to the output and

3Constants are always extracted in the same way.

more internal points match. The metric is an average across
all cases. When all elements are obfuscated, these effects are
averaged.

This experiment allowed us to identify design practices that
lead to inefficient obfuscations or even collisions. In DFT, one-
bit signals were initialized with 32-bit integers with values 0/1.
While Verilog allows this syntax, the signals are trimmed by
logic synthesis. A naive RTL constant analysis would pick 32
bits for obfuscating a single-bit. Since only the least significant
bit impacts the circuit function, flipping the other 31 bits would
lead to a collision. So, we extended ASSURE AST analysis
to match the constant sizes with those of the target signals.

C. Synthesis Overhead

We did logic synthesis using the Synopsys Design Compiler
J-2018.04-SP5 targeting the Nangate 15nm ASIC technology
at standard operating conditions (25C). We evaluated the area
overhead and critical-path delay degradation relative to the
original design. While our goal is to protect the IP function-
ality and not to optimize the resources, designs with lower
cost are preferred. ASSURE generates correct designs with no
combinational loops. Constant obfuscation extracts the values
that are used as the key and no extra logic. Operation obfus-
cation multiplexes results of original and dummy operations.
Branch obfuscation adds XOR to the conditions.

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 9

25% 50% 75% 100%

0×

0.05×

0.10×

CEP-RSA
CONST OP BRANCH ALL

OPENCORES-VGA_LCD
CONST OP BRANCH ALL

CEP-DFT
CONST OP BRANCH ALL

CEP-IDFT
CONST OP BRANCH ALL

OPENCORES-ETHMAC
CONST OP BRANCH ALL

0×

0.2×

0.4×

IWLS-SS_PCM
CONST OP BRANCH ALL

IWLS-SASC
CONST OP BRANCH ALL

OPENROAD-GCD
CONST OP BRANCH ALL

IWLS-SIMPLE_SPI
CONST OP BRANCH ALL

CEP-SHA256
CONST OP BRANCH ALL

0×

0.5×

1.0×

1.5×

2.0×

IWLS-MEM_CTRL
CONST OP BRANCH ALL

IWLS-USB_PHY
CONST OP BRANCH ALL

CEP-DES3
CONST OP BRANCH ALL

OPENCORES-I2C_SLAVE
CONST OP BRANCH ALL

OPENROAD-ARIANE.ID_STAGE
CONST OP BRANCH ALL

0×

2×

4×

CEP-MD5
CONST OP BRANCH ALL

CEP-FIR
CONST OP BRANCH ALL

OPENROAD-IBEX
CONST OP BRANCH ALL

CEP-IIR
CONST OP BRANCH ALL

CEP-AES
CONST OP BRANCH ALL

-0.2×
0×

0.2×
BRANCH

Fig. 8: Area overhead for ASSURE obfuscation. Benchmarks are presented in increasing order of total overhead.

CONST
OP
BRANCH

μm
2 /

ke
y

bi
t

0

0.5

1.0

1.5

2.0

2.5

IWLS-SASC

OPENCORES-ARIANE.ID_STAGE

OPENCORES-VGA_LCD

IWLS-USB_PHY

OPENCORES-ETHMAC

IWLS-SS_PCM

IWLS-MEM_CTRL

IWLS-SIMPLE_SPI

OPENROAD-IBEX

CEP-DES3

CONST
OP
BRANCH

−75

−40

μm
2 /

ke
y

bi
t

0

20

40

OPENCORES-GCD

CEP-IDFT

CEP-DFT

CEP-RSA

OPENCORES-I2C_SLAVE

CEP-SHA256
CEP-FIT

CEP-IIR

CEP-AES

CEP-MD5

Fig. 9: Area overhead per key bit for ASSURE obfuscation. Benchmarks are presented in increasing order of total overhead.

1) Area overhead: Table I reports the results of the original
design – the number of cells in the netlists, the area (in
µm2) and the critical-path delay (in ns). Fig. 9 reports
the area overhead of all obfuscations with respect to the
original designs. The three techniques are independent and
so, ALL results are the aggregate of the three techniques.
Constant obfuscation produces an average overhead in the
range 18% (*-CONST-25) to 80% (*-CONST-100). The
maximum overhead is about 450% for AES-CONST-100,
which has the most number obfuscated constants. ASSURE
removes hard-coded constants from the circuit, preventing
logic optimizations like constant propagation. The average
operation obfuscation overhead is in the range 9% (*-OP-25)
to 25% (*-OP-100). IBEX-OP-100 has the maximum
overhead of 155% since it has the most operations. Branch
obfuscation produces a smaller average overhead, in the range
6% (*-BRANCH-25) to 14% (*-BRANCH-100) with a

maximum overhead of 113% for DES-BRANCH-100. This
benchmark has the largest proportion of branches relative to
other elements. MD5 results in savings („4%) when we apply
branch obfuscation (MD5-BRANCH-*). The branch conditions
help pick elements from the library that lower area overhead.

The real impact of ASSURE depends on how many ele-
ments are obfuscated in each configuration. So, we computed
the area overhead per key bit as the area overhead of a
configuration divided by the number of key bits used for its
obfuscation and report it in Fig. 8. In most cases, operation
obfuscation has the largest impact, followed by branches
and then constants. This impact is larger for data-intensive
benchmarks, like CEP filters (DFT, IDFT, FIR, and IIR).
Constants usually require more obfuscation bits, so the impact
per bit is smaller. Each obfuscated operation introduces a
new functional unit and multiplexer per key bit. MD5 has a
large negative impact when obfuscating the branches justifying

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 10

25% 50% 75% 100%

−0.2×

0×

0.2×

CEP-SHA256
CONST OP BRANCH ALL

IWLS-SIMPLE_SPI
CONST OP BRANCH ALL

OPENROAD-GCD
CONST OP BRANCH ALL

CEP-AES
CONST OP BRANCH ALL

IWLS-SS_PCM
CONST OP BRANCH ALL

0×

0.1×

0.2×

0.3×

CEP-DES3
CONST OP BRANCH ALL

IWLS-SASC
CONST OP BRANCH ALL

CEP-RSA
CONST OP BRANCH ALL

CEP-MD5
CONST OP BRANCH ALL

CEP-DFT
CONST OP BRANCH ALL

0×

0.5×

1.0×

OPENCORES-I2C_SLAVE
CONST OP BRANCH ALL

CEP-IDFT
CONST OP BRANCH ALL

IWLS-USB_PHY
CONST OP BRANCH ALL

OPENCORES-VGA_LCD
CONST OP BRANCH ALL

IWLS-MEM_CTRL
CONST OP BRANCH ALL

0.0×

1.0×

2.0×

3.0×

OPENCORES-ETHMAC
CONST OP BRANCH ALL

CEP-FIR
CONST OP BRANCH ALL

OPENROAD-IBEX
CONST OP BRANCH ALL

OPENROAD-ARIANE.ID_STAGE
CONST OP BRANCH ALL

CEP-IIR
CONST OP BRANCH ALL

Fig. 10: Timing overhead for ASSURE obfuscation. Benchmarks are presented in increasing order of total overhead.

the area reduction when we apply only branch obfuscation
(MD5-BRANCH-*). On the contrary, even if AES was the
benchmark with the largest overhead (and many more bits),
its overhead per key bit is comparable with the others. We re-
peated the experiments several times and we observed minimal
variants with different locking keys.

To conclude the area overhead is related to the design
characteristics and to the number of key bits. The former
determine the impact of ASSURE, while the latter determine
the total amount of overhead. The overhead depends on the
design, the techniques, and the number of key bits and not on
the values of the locking key.

2) Timing overhead: Fig. 10 shows the overhead introduced
by the ASSURE obfuscation logic on the critical path when
synthesis is performed targeting area optimization. Timing
overhead is application dependent with similar results across
the different techniques. The overhead is larger when the
obfuscated elements are on the critical path. This is relevant
in data-intensive (with many operations) and control-intensive
(with control branches on critical path) designs. In most
benchmarks, the timing overhead is ă20%. Constants have
a positive impact on the overhead (see AES and DES3).

V. DISCUSSION AND CONCLUDING REMARKS

We presented ASSURE, an RTL locking framework against
an untrusted foundry that has no access to an unlocked
functional chip. This oracle-less threat model is relevant for
low-volume IC production. ASSURE operates on the Verilog
RTL description and is compatible with industrial EDA flows.

ASSURE hides the essential semantics (constants, op-
erations, and control-flow branches) in a way that is
indistinguishible and provably secure against attackers with
no prior knowledge of the IP function, preventing oracle-less
attacks. In our experimental analysis with formal verification
and logic synthesis EDA tools, we show the circuits can
be unlocked only with the correct key and obfuscating the
design closer to the inputs induces more verification failures.
ASSURE obfuscations introduce area overhead that depends
on the obfuscation techniques and is proportional to the
number of key bits. In case of constants, obfuscation prevent
logic optimizations, like constant propagation, while operation
obfuscation has the largest overhead per key bit and the key
values have no impact on the obfuscation results. ASSURE
has no impact on the clock cycles but only on the critical
path delay in a way that depends on where the obfuscation
is applied. These guidelines can be used by the designer to
understand how to apply obfuscation on a given design.

REFERENCES

[1] S. W. Jones, “Technology and Cost Trends at Advanced Nodes,” IC
Knowledge LLC, 2019.

[2] J. Hurtarte, E. Wolsheimer, and L. Tafoya, Understanding Fabless IC
Technology. Elsevier, Aug. 2007.

[3] S. Heck, S. Kaza, and D. Pinner, “Creating value in the semiconductor
industry,” McKinsey on Semiconductors, pp. 5–144, Oct. 2011.

[4] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit Integrated Circuits: A rising threat in the global
semiconductor supply chain,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1207–1228, Aug. 2014.

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 11

[5] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L. Wang, “Challenges and
trends in modern SoC design verification,” IEEE Design & Test, vol. 34,
no. 5, pp. 7–22, Oct. 2017.

[6] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in Design, Automation & Test Conference in Europe, 2013,
pp. 1259–1264.

[7] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “IP watermarking
techniques: Survey and comparison,” in IEEE International Workshop
on System-on-Chip for Real-Time Applications, 2003, pp. 60–65.

[8] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin,
“IP protection and supply chain security through logic obfuscation:
A systematic overview,” ACM Transactions on Design Automation of
Electronic Systems, vol. 24, no. 6, Sep. 2019.

[9] B. Tan, R. Karri, N. Limaye, A. Sengupta, O. Sinanoglu, M. M. Rahman,
S. Bhunia, D. Duvalsaint, R. Blanton, A. Rezaei, Y. Shen, H. Zhou,
L. Li, A. Orailoglu, Z. Han, A. Benedetti, L. Brignone, M. Yasin,
J. Rajendran, M. Zuzak, A. Srivastava, U. Guin, C. Karfa, K. Basu,
V. V. Menon, M. French, P. Song, F. Stellari, G.-J. Nam, P. Gadfort,
A. Althoff, J. Tostenrude, S. Fazzari, E. Breckenfeld, and K. Plaks,
“Benchmarking at the frontier of hardware security: Lessons from logic
locking,” arXiv, 2020.

[10] S. Amir, B. Shakya, X. Xu, Y. Jin, S. Bhunia, M. Tehranipoor, and
D. Forte, “Development and evaluation of hardware obfuscation bench-
marks,” Journal of Hardware and Systems Security, vol. 2, pp. 142–161,
2018.

[11] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott, and H. Zhou, “BeSAT:
Behavioral SAT-based Attack on Cyclic Logic Encryption,” in Asia and
South Pacific Design Automation Conference, 2019, pp. 657–662.

[12] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199–207, Feb. 2019.

[13] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in Conference on Computer and Communications Security, 2017, pp.
1601–1618.

[14] F. Yang, M. Tang, and O. Sinanoglu, “Stripped Functionality Logic
Locking with Hamming Distance Based Restore Unit (SFLL-hd) –
unlocked,” IEEE Transactions on Information Forensics and Security,
pp. 1–9, 2019.

[15] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” in Design, Automation & Test Conference in Europe, Mar.
2019, pp. 1–6.

[16] C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “TAO: Techniques
for algorithm-level obfuscation during high-level synthesis,” in Design
Automation Conference, Jun. 2018, pp. 1–6.

[17] M. Yasin, C. Zhao, and J. J. Rajendran, “SFLL-HLS: Stripped-
functionality logic locking meets high-level synthesis,” in International
Conference on Computer-Aided Design, 2019, pp. 1–4.

[18] Y. Lao and K. K. Parhi, “Obfuscating dsp circuits via high-level
transformations,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 5, pp. 819–830, 2015.

[19] G. Di Crescenzo, A. Sengupta, O. Sinanoglu, and M. Yasin, “Logic
locking of boolean circuits: Provable hardware-based obfuscation from a
tamper-proof memory,” in Innovative Security Solutions for Information
Technology and Communications, E. Simion and R. Géraud-Stewart,
Eds. Cham: Springer International Publishing, 2020, pp. 172–192.

[20] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep. 148, 1997.

[21] C. K. Behera and D. L. Bhaskari, “Different obfuscation techniques for
code protection,” in International Conference on Eco-friendly Comput-
ing and Communication Systems, vol. 70, 2015, pp. 757 – 763.

[22] H. Xu, Y. Zhou, Y. Kang, and M. R. Lyu, “On secure and usable program
obfuscation: A survey,” ArXiv, 2017.

[23] K. Shamsi, D. Z. Pan, and Y. Jin, “On the impossibility of
approximation-resilient circuit locking,” in IEEE International Sympo-
sium on Hardware Oriented Security and Trust, 2019, pp. 161–170.

[24] D. S. B. T. Force, “Report on high performance microchip supply,”
https://www.hsdl.org/?abstract&did=454591, 2005.

[25] J. Rajendran, A. Ali, O. Sinanoglu, and R. Karri, “Belling the cad:
Toward security-centric electronic system design,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 11, pp. 1756–1769, Nov. 2015.

[26] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic locking
for secure outsourced chip fabrication: A new attack and provably secure
defense mechanism,” arXiv, 2017.

[27] L. Li and A. Orailoglu, “Piercing logic locking keys through redundancy
identification,” in Design, Automation & Test Conference in Europe,
2019, pp. 540–545.

[28] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine learning guided
structural analysis attack on hardware obfuscation,” in Asian Hardware
Oriented Security and Trust Symposium, 2018, pp. 56–61.

[29] ——, “SURF: Joint structural functional attack on logic locking,” in
International Symposium on Hardware Oriented Security and Trust,
2019, pp. 181–190.

[30] MIT Lincoln Laboratory, “Common Evaluation Platform (CEP),” Avail-
able at: https://github.com/mit-ll/CEP.

[31] H. Badier, J. L. Lann, P. Coussy, and G. Gogniat, “Transient key-
based obfuscation for hls in an untrusted cloud environment,” in Design,
Automation & Test Conference in Europe, 2019, pp. 1118–1123.

[32] S. Takamaeda-Yamazaki, “Pyverilog: A Python-based hardware design
processing toolkit for Verilog HDL,” in International Symposium on
Applied Reconfigurable Computing, Apr. 2015, pp. 451–460.

[33] T. Ajayi, V. A. Chhabria, M. Fogaca, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, F. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz,
L. Wang, Z. Wang, M. Woo, and B. Xu, “Toward an open-source digital
flow: First learnings from the openroad project,” in Design Automation
Conference, 2019.

[34] Oliscience, “OpenCores repository,” Available at: https://opencores.org/.
[35] M. Püschel, F. Franchetti, and Y. Voronenko, Encyclopedia of Parallel

Computing. Springer, 2011, ch. Spiral.

Christian Pilato is a Tenure-Track Assistant Pro-
fessor at Politecnico di Milano. He was a Post-doc
Research Scientist at Columbia University (2013-
2016) and at the ALaRI Institute of the Università
della Svizzera italiana (2016-2018). He was also
a Visiting Researcher at New York University, TU
Delft, and Chalmers University of Technology. He
has a Ph.D. in Information Technology from Po-
litecnico di Milano (2011). His research interests
include high-level synthesis, reconfigurable systems
and system-on-chip architectures, with emphasis on

memory and security aspects. He served as program chair of EUC 2014 and
is currently serving in the program committees of many conferences on EDA,
CAD, embedded systems, and reconfigurable architectures (DAC, ICCAD,
DATE, CASES, FPL, ICCD, etc.) He is an IEEE Senior Member, and a
member of ACM and HiPEAC.

Animesh Basak Chowdhury received his MS in
Computer Science from Indian Statistical Institute
in 2016. Currently, he is a doctoral candidate at
the NYU Centre for Cybersecurity. His research
interests include Secure Electronics Design Automa-
tion (EDA), machine learning and SoC security.
Prior to joining the Ph.D. program, he spent three
years as a researcher at Tata Research Development
and Design Centre (TRDDC), India, where he was
primarily working in the area of formal verification
and security testing. He has won several awards and

recognition in International Software Verification and Testing Competitions
(SV-COMP, TEST COMP, and RERS-Challenge).

SUBMITTED TO IEEE TRANSACTIONS ON VLSI SYSTEMS; OCTOBER 11, 2020 12

Donatella Sciuto received the Laurea (Ms) in Elec-
tronic Engineering from Politecnico di Milano and
the PhD in Electrical and Computer Engineering
from the University of Colorado, Boulder, and the
MBA from Bocconi University. She is currently
the Executive Vice Rector of the Politecnico di
Milano and Full Professor in Computer Science and
Engineering. Her main research interests cover the
methodologies for the design of embedded systems
and multicore systems considering performance,
power and security metrics. More recently she has

been involved in managing and developing research projects in the area of
smart cities and in the application of new ICT technologies to different
application fields. She has published over 300 scientific papers. She is a
Fellow of IEEE for her contributions in embedded system design. She has
served as Vice-President of Finance and then President of the IEEE Council
of Electronic Design Automation from 2009 to 2013 and she serves in different
capacities in IEEE Awards Committees, in scientific boards of IEEE journals
and conferences.

Ramesh Karri is a Professor of ECE at
New York University. He co-directs the NYU
Center for Cyber Security (http://cyber.nyu.edu).
He founded the Embedded Systems Challenge
(https://csaw.engineering.nyu.edu/esc), the annual
red team blue team event. He co-founded Trust-
Hub (http://trust-hub.org). Ramesh Karri has a Ph.D.
in Computer Science and Engineering, from the
UC San Diego and a B.E in ECE from Andhra
University. His research and education activities
in hardware cybersecurity include trustworthy ICs;

processors and cyber-physical systems; security-aware computer-aided design,
test, verification, validation, and reliability; nano meets security; hardware
security competitions, benchmarks, and metrics; biochip security; additive
manufacturing security. He published over 250 articles in leading journals
and conference proceedings. Karri’s work on hardware cybersecurity received
best paper nominations (ICCD 2015 and DFTS 2015) and awards (ACM
TODAES 2018, ITC 2014, CCS 2013, DFTS 2013 and VLSI Design 2012).
He received the Humboldt Fellowship and the NSF CAREER Award. He is the
editor-in-chief of ACM JETC and serve(d)s on the editorial boards of IEEE
and ACM Transactions (TIFS, TCAD, TODAES, ESL, D&T, JETC). He was
an IEEE Computer Society Distinguished Visitor (2013-2015). He served on
the Executive Committee of the IEEE/ACM DAC leading the SecurityDAC
initiative (2014-2017). He served as program/general chair of conferences and
serves on program committees. He is a Fellow of the IEEE for leadership and
contributions to Trustworthy Hardware.

Siddharth Garg received his Ph.D. degree in Elec-
trical and Computer Engineering from Carnegie
Mellon University in 2009, and a B.Tech. degree in
Electrical Engineering from the Indian Institute of
Technology Madras. He joined NYU in Fall 2014
as an Assistant Professor, and prior to that, was an
Assistant Professor at the University of Waterloo
from 2010-2014. His general research interests are
in computer engineering, and more particularly in
secure, reliable and energy-efficient computing. In
2016, Siddharth was listed in Popular Science Mag-

azine’s annual list of ”Brilliant 10” researchers. Siddharth has received the
NSF CAREER Award (2015), and paper awards at the IEEE Symposium
on Security and Privacy (S&P) 2016, USENIX Security Symposium 2013,
at the Semiconductor Research Consortium TECHCON in 2010, and the
International Symposium on Quality in Electronic Design (ISQED) in 2009.
Siddharth also received the Angel G. Jordan Award from ECE department of
Carnegie Mellon University for outstanding thesis contributions and service
to the community. He serves on the technical program committee of several
top conferences in the area of computer engineering and computer hardware,
and has served as a reviewer for several IEEE and ACM journals.

http://cyber.nyu.edu
http://trust-hub.org

	I Introduction
	I-A Related Work
	I-B Paper Contributions

	II Threat Model: Untrusted Foundry
	III Overview of ASSURE
	III-A ASSURE Obfuscation Flow
	III-B ASSURE Obfuscations and Security Proofs
	III-B1 Constant Obfuscation
	III-B2 Operation Obfuscation
	III-B3 Branch Obfuscation

	III-C ASSURE Against Oracle-Less Attacks
	III-C1 Resilience against desynthesis and redundancy attacks
	III-C2 Resilience against ML-guided attacks

	IV Experimental Validation of ASSURE
	IV-A Experimental Setup
	IV-B Security Assessment
	IV-B1 Correctness
	IV-B2 Key Effect

	IV-C Synthesis Overhead
	IV-C1 Area overhead
	IV-C2 Timing overhead

	V Discussion and Concluding Remarks
	References
	Biographies
	Christian Pilato
	Animesh Basak Chowdhury
	Donatella Sciuto
	Ramesh Karri
	Siddharth Garg

