
VeriFuzz: Program Aware Fuzzing

(Competition Contribution)

Animesh Basak Chowdhury, Raveendra Kumar Medicherla(B),
and Venkatesh R

Tata Research Development and Design Centre, Pune, India
raveendra.kumar@tcs.com

Abstract. VeriFuzz is a program aware fuzz testing tool, which com-
bines the power of feedback-driven evolutionary fuzz testing with static
analysis. VeriFuzz deploys lightweight static analysis to extract meaning-
ful information about program behavior that can aid fuzzing based test-
input generation to achieve coverage goals quickly. We use constraint-
solver to generate an initial population of test-inputs. VeriFuzz could
generate the maximum number of counterexamples for reachsafety cat-
egory benchmarks in SV-COMP 2019 and in Test-Comp 2019 [16]. (All
the terms in typewriter font are competition specific. See [15].)

1 Introduction

VeriFuzz is a coverage driven automated test-input generation tool based on grey-
box fuzzing [5]. The idea of grey-box fuzzing is to use lightweight instrumentation
to observe behaviors exhibited during a test run. This information is used while
fuzzing for new test-inputs that might exhibit new behaviors. For VeriFuzz, the
behavior of interest is code coverage. VeriFuzz relies on evolutionary algorithms
to generate newer test-inputs from an initial population of test-inputs. Central to
an evolutionary algorithm is the selection of best-fit candidates from a population
and generate offspring by applying crossover and mutating operations on them.
The newer offspring are checked for their fitness against a goal. The population
evolves by adding the fit offspring to the existing population. In an automated
testing, a candidate test-input plays the role of an individual in a population. The
new test-inputs are generated from a selected test-input by repeatedly applying
mutation operations, for example, by flipping byte at a random position. The
fitness of a generated test-input is determined by the code coverage during its
run [11,18].

State-of-the-art grey-box fuzzers such as afl-fuzz [19], though simple to use,
have several key shortcomings. (a) The fuzzer is aware of neither the program
structure nor the input structure. This leads to the generation of a large set
of redundant test-inputs with respect to code coverage. (b) For programs that

R. K. Medicherla—Jury Member.

c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 244–249, 2019.
https://doi.org/10.1007/978-3-030-17502-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-17502-3_22

VeriFuzz: Program Aware Fuzzing (Competition Contribution) 245

does complex validations on their input, the fuzzer finds it hard to generate a
test-input that satisfies such validation conditions [13]. Finding a suitable initial
population of test-inputs for such programs requires the analysis of validation
conditions. (c) For programs with unbounded loops, the fuzzer may get stuck
forever without generating any new test-inputs. There are several approaches
proposed in the literature to address some of these shortcomings [1,7,12,13].
However, all these approaches address each concern separately.

2 Our Approach

In order to alleviate the problems described in Sect. 1, our approach analyses
and transforms the subject program. The analysis information is then passed to
the enhanced mutation engine of afl-fuzz for fuzzing the transformed program.
The following are the key steps of our approach.

Efficient Instrumentation: To measure the coverage due to a run on a test-
input, the subject program is instrumented. However, instrumentation adds a
significant overhead to the program execution, impacting the fuzzer’s execution
speed. We have optimized the instrumentation overhead by placing the probes
either true or false branches of each conditional statement in the program. Our
scheme is efficient to implement and preserves the coverage measure though it
is sub-optimal than instrumentation schemes proposed in literature [7].

Loop Bounding: Certain class of programs, for example, reactive programs,
during their execution, either does not terminate or crash upon reaching the
error location1. In order to handle such non-terminating programs, our approach
transforms the program loops by replacing the condition in their loop heads with
a known bound. This bound is increased dynamically during the fuzzer run till
it finds an input that can take program execution to an error location or the
budgeted time elapses.

Novel Initial Test Population Generation: Grey-box fuzzers find it hard to
generate test-inputs that can take program execution to cover the program blocks
that are guarded by complex checks [10,13]. If the initial test-input population
can take program execution through some of the complex checks, fuzzing such
inputs is likely to generate test-inputs that can pass through other complex
checks [17]. In order to create such initial test-input population, our approach
first flattens the program by unrolling the loops up to a certain bound. Then, a
program path is chosen that contains such complex checks and path constraints
are generated along that path. The constraints are solved to create an initial
test-input population.

Program Analysis to Assist Mutation: For programs that read input only
within restricted range values, it is possible to fine-tune the fuzzer’s mutation
operators to choose values within this restricted ranges. In order to determine

1 Program statement where error function VERIFIER error() is called.

246 A. B. Chowdhury et al.

the ranges of input values that can reach the error locations, our approach stat-
ically determines the input value ranges of the program using k -path interval
analysis [9]. For a given program, this analysis determines the conservative over
approximate ranges of input values that may reach any given program point. We
have enhanced the mutation engine of the fuzzer such that it accepts the input
value ranges at the error location in the program and generates inputs that have
values within the given ranges.

Algorithmic Selection of Strategies: All the aforementioned techniques are
generic enough to use across the programs. However, in order to optimize the
given resource budgets in the competition, we have selectively applied a subset of
techniques to a specific class of programs. For example, loop bounding technique
is applied to programs where syntactic unbounded loop structures are detected.
In order to identify and map the best performing set of techniques to all bench-
mark programs, we have grouped them into a finite set of classes and formulated
it as multi-label classification problem. The classifier model is developed using
a non-parametric supervised learning based approach [6]. The model has been
trained using nine syntactic structures of a C program and a subset of techniques
as classification labels. The benchmark programs from SV-COMP 2018 [14] were
used as training and validation set. We have used the decision tree classifier for
this multi-label classification [2].

3 Tool Architecture and Flow

Figure 1 shows the architecture of the VeriFuzz tool. It consists of a fuzzing
engine and an analysis engine. The core fuzzing engine is built on top of the state-
of-art grey-box fuzzer afl-fuzz v2.52b [19]. The program analysis, instrumentation
and transformation components of the analysis engine are implemented using the
PRISM, a TCS in-house program analysis framework [8]. The initial input gen-
eration component uses CBMC v5.10 [3] as path-constraint solver. The program
classification component uses an offline trained model and scikit-learn v.0.19.2
to access the model. The implementation is in C, Java, and Python languages.

The input to the tool is a program P and a safety property φ. In the first
step, the syntactic features are extracted and the class of the program is deter-
mined using a program classification module. This class information is used in
subsequent steps. In the second step, the program Pi is generated using an instru-
mentation and transformation module. This step also emits the transformed pro-
grams for witness generation (Pw) and initial test-input generation modules.
In the next step, the program is analysed to determine input ranges. These input
ranges are used to formulate the fuzzing engine parameters Fi. Subsequently,
initial test-input population Ti is generated using the initial input generation
module. The fuzz engine is then invoked with Pi, Fi, and Ti as inputs.

As a first step of the fuzzing engine, the program Pi and a harness program
that implemented VERIFIER * functions are compiled together using gcc to
generate the executable program Pe. The core fuzzer begins with Ti as its initial

VeriFuzz: Program Aware Fuzzing (Competition Contribution) 247

Program
()

Property
()

Fuzz Engine

Muta on
and

Crossover

Coverage
(fitness)

Check

Test inputs
(Popula on)

Priori za on
and Selec on

Test run

Instrumented
Program ()
Fuzz engine

parameters ()

Ini al test
inputs ()

Witness
Genera on

Crashing
input ()

Analysis Engine

Program
classifica on

Program
Analysis

Ini al input
genera on

Program
Instrumenta on

and
Transforma on

Error-witness
Automata ()

Program for
Witness()

Fig. 1. VeriFuzz architecture.

population, executes Pe, and measures the coverage. A test-input from the pop-
ulation is selected and mutated several times to generate newer test-inputs Tg.
The program Pe is repeatedly executed with each test-input tg ∈ Tg and cover-
age is measured. The fitness check step compares the code coverage due run on
each tg with the historical code coverage and determines whether tg should be
added to the population or not. This process is repeated until the core fuzzer
finds a crashing test-input tc that causes the program run to reach the error
location or the time budget is elapsed. The tc and Pw are passed to a witness
generation program to generate error-witness.

4 Strengths and Weaknesses

The core strength of VeriFuzz is its ability to find a test-input that can cause
the program execution to reach the error locations quickly. The tool participated
both in SV-COMP and Test-Comp [16]. In SV-COMP, VeriFuzz could identify
1264 out of 1458 reachsafety FALSE benchmarks with 67 s as mean time per
verification task. Whereas in Test-Comp, it could identify bugs in 592 out
of 636 benchmarks. VeriFuzz could generate test-inputs that can, on an average,
cover 70% branches in 1720 benchmarks.

VeriFuzz explores the concrete program paths randomly and redundantly due
to its evolutionary approach. Therefore it may not always discover a test-input
that cause the execution to reach an error location.

5 Tool Configuration and Setup

The VeriFuzz tool for testing SV-COMP benchmarks is available at the URL
https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/verifuzz
.zip. Its Test-Comp 2019 variant is available at the URL https://gitlab.com/sosy-
lab/test-comp/archives-2019/blob/master/2019/verifuzz.zip. The benchexec

https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/verifuzz.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2019/blob/master/2019/verifuzz.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/master/2019/verifuzz.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/master/2019/verifuzz.zip

248 A. B. Chowdhury et al.

tool-info module is verifuzz.py and the benchmark description file is verifuzz.xml.
To install and run the tool, follow the instructions provided in README.txt
with the tool. A sample run command is as follows:
./scripts/verifuzz.py --propertyFile unreach-call.prp example.c

6 Software Project and Contributors

VeriFuzz is developed by the authors at TCS Research. We would like to thank
B. Chimdyalwar and S. Kumar from VeriAbs [4] team for the help in the under-
standing of k -path interval analysis.

References

1. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox
fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 2329–2344. ACM (2017)

2. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd SIGKDD International Conference on Knowledge Discovery and Data
mining (KDD), pp. 785–794. ACM (2016)

3. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

4. Darke, P., et al.: VeriAbs: verification by abstraction and test generation. In: Beyer,
D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 457–462. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89963-3 32

5. DeMott, J., Enbody, R., Punch, W.F.: Revolutionizing the field of grey-box attack
surface testing with evolutionary fuzzing. BlackHat and Defcon (2007)

6. Demyanova, Y., Pani, T., et al.: Empirical software metrics for benchmarking of
verification tools. Form. Meth. Syst. Des. 50(2–3), 289–316 (2017)

7. Hsu, C.C., Wu, C.Y., Hsiao, H.C., Huang, S.K.: INSTRIM: lightweight instrumen-
tation for coverage-guided fuzzing. In: Symposium on Network and Distributed
System Security (NDSS), Workshop on Binary Analysis Research (2018)

8. Khare, S., Saraswat, S., Kumar, S.: Static program analysis of large embedded code
base: an experience. In: Proceedings of the India Software Engineering Conference
(ISEC) (2011)

9. Kumar, S., Chimdyalwar, B., Shrotri, U.: Precise range analysis on large industry
code. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pp. 675–678. ACM (2013)

10. Lemieux, C., Sen, K.: FairFuzz: a targeted mutation strategy for increasing grey-
box fuzz testing coverage. In: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pp. 475–485. ACM (2018)

11. McMinn, P.: Search-based software testing: past, present and future. In: 2011 IEEE
Fourth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 153–163. IEEE (2011)

12. Rawat, S., Jain, V., et al.: VUzzer: application-aware evolutionary fuzzing. In:
USENIX security (2017)

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-319-89963-3_32

VeriFuzz: Program Aware Fuzzing (Competition Contribution) 249

13. Stephens, N., Grosen, J., et al.: Driller: augmenting fuzzing through selective sym-
bolic execution. In: Proceedings of the Network and Distributed System Security
Symposium (NDSS) (2016)

14. SV-COMP 2018 Benchmarks: (Commit - f2996ff). https://github.com/sosy-lab/
sv-benchmarks/releases/tag/svcomp18

15. SV-COMP, Test-Comp: Definitions and Rules (2019). https://sv-comp.sosy-lab.
org/2019/rules.php, https://test-comp.sosy-lab.org/2019/rules.php

16. TOOLympics 2019: Competetion on software testing (Test-Comp). TACAS 2019
(2019). https://test-comp.sosy-lab.org/2019/

17. Wang, J., Chen, B., Wei, L., Liu, Y.: SkyFire: data-driven seed generation for
fuzzing. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 579–594.
IEEE (2017)

18. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic
structural testing. Inf. Softw. Technol. 43(14), 841–854 (2001)

19. Zalewski, M.: American fuzzy lop. http://lcamtuf.coredump.cx/afl/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp18
https://github.com/sosy-lab/sv-benchmarks/releases/tag/svcomp18
https://sv-comp.sosy-lab.org/2019/rules.php
https://sv-comp.sosy-lab.org/2019/rules.php
https://test-comp.sosy-lab.org/2019/rules.php
https://test-comp.sosy-lab.org/2019/
http://lcamtuf.coredump.cx/afl/
http://creativecommons.org/licenses/by/4.0/

	VeriFuzz: Program Aware Fuzzing
	1 Introduction
	2 Our Approach
	3 Tool Architecture and Flow
	4 Strengths and Weaknesses
	5 Tool Configuration and Setup
	6 Software Project and Contributors
	References

