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Abstract. Fuzz Testing is a well-studied area in the field of Software
Maintenance and Evolution. In recent years, coverage-based Greybox
fuzz testing has gained immense attention by discovering critical secu-
rity level and show-stopper bugs in industrial grade software. Greybox
fuzz-testing uses coverage maximization as objective function and achieve
the same by employing feedback-driven evolutionary algorithms. In our
work, we have utilized the power of Greybox fuzz testing, combined
with interval analysis for solving reachability problem in sequential and
industrial RERS (Rigorous Examination of Reactive Software) 2019
benchmarks.
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1 Introduction

RERS-Fuzz is an automated test-generation tool targeted for coverage maxi-
mization in reactive softwares. The techniques employed are heavily based on
key concepts of Greybox fuzz-testing [6]. The underlying idea is to employ evolu-
tionary algorithms for generating interesting test-inputs that help in exploration
of newer code segments. In Greybox fuzz-testing, a set of random test-inputs are
considered as initial population. The fitness function is the code coverage mea-
sure observed by an individual test-input. For every test-input, fitness value is
calculated and best-fit test-inputs are retained for further fuzzing. The retained
test-inputs are subjected to various mutation and crossover operations for gen-
eration of newer test-inputs. The cycle repeats until certain user-defined goals
are met or statistical measures on coverage metrics are achieved.

We have mainly used the following tools and techniques and modified them
inline with our requirements to solve reachability problems on RERS 2019 bench-
marks :-

– American Fuzzy Lop (AFL v2.52b) [1].
– Instrim [2].
– VeriFuzz [3]
– LLVM Interval Analysis [4].

In subsequent sections, we briefly describe about our approach, highlighting core
techniques, tool architecture and strengths and weaknesses associated with them.

ar
X

iv
:s

ub
m

it/
27

82
15

7 
 [

cs
.S

E
] 

 2
6 

Ju
l 2

01
9



2 Animesh et al.

2 Approach

State-of-art greybox fuzzers, like afl-fuzz uses a stronger notion of structural
code coverage of program’s control-flow-graph (CFG), called branch-pair coverage
as fitness function. The tool maintains a shared 64kB memory where each byte
entry represents a logarithmic visit count of a typical branch-pair by all test-
inputs generated so far. The amount of shared memory is designed in such a way
that entire shared memory can be stored in cache-memory and hence execution
speed of fuzz-testing tool remains unhampered. However, as per our observa-
tion, the number of conditional statements in RERS benchmarks are typically
very high. Hence, instrumenting each conditional statement of program would
lead to heavy collision [5]. Secondly, the ranges of input values driving the re-
active softwares is comparatively small. Hence, application of heavy-weight and
sophisticated mutation and crossover operations would amount to generation of
useless test-inputs rejected by the reactive system. Finally, in reactive softwares,
code-coverage does not necessarily ensure that newer states are also covered.

In our tool, we have tried of identify the problems where plain usage of grey-
box fuzz testing tool would fail. We have added our own techniques on top of
core-fuzzing engine to suitably tune the application of evolutionary fuzz testing
on RERS benchmarks. The following are the key techniques of our approach.

Minimal Node Instrumentation: As discussed earlier, the software-under-
test (SUT) is subjected to node instrumentation for measuring code coverage
during a test-run. However, in RERS benchmarks the number of conditional state-
ments are significantly high and complex. In order to reduce cache collision and
execution overhead arising from instrumentation, number of instrumentation
points have to be reduced. In our tool, we have used lightweight instrumen-
tation [2] which is efficient and instruments minimal conditional statements of
SUT, without loosing any coverage information. The technique have posed the
minimal instrumentation as path differentiation problem and identify minimal
number of nodes in CFG for which any two branch-pairs can be differentiated.

Interval Analysis assisted Mutation: Reactive softwares belong to class of
program where input space is very restricted [3]. It is possible to tune mutation
and crossover operation within the ranges of input taken by SUT. We have taken
help of LLVM’s interval analysis [4] to identify ranges of input consumed by
RERS to go into deeper program segments. The values are then passed on to our
parametric fuzz engine, which in turn does crossover and mutation operation
over those restricted ranges.

State Instrumentation: The minimal node instrumentation takes care of ef-
ficient branch-pair coverage in program’s CFG. But, it may happen that a test-
input have exhibited no new branch-pair coverage in its run, but it have ex-
plored a new state . We define state as, unique values assignments to all the
global variables in SUT. In addition to existing 64k shared memory for branch-
pair instrumentation, we have additionally deployed 64k shared memory, which
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maintains a binary valued entry whether a state has been explored or not. Ac-
cordingly, our fitness function is also updated with state coverage information.
Any test-input with no new branch-pair coverage but new state space coverage
are now retained for further fuzzing.

3 Tool Implementation
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Fig. 1. RERS-Fuzz : Overview

The overall flow of RERS-Fuzz has been shown in figure 1. The fuzzing mod-
ule has been developed on top greybox fuzzer afl-fuzz [1]. The green blocks in
the fuzzing module denotes that techniques have been modified and tuned with
RERS programs. Red blocks denote the algorithm is unchanged and in line with
afl-fuzz core algorithm. We have additionally used Instrim1 package for minimal
node instrumentation on top of LLVM-7 framework. For Interval Analysis mod-
ule, we used the LLVM package developed for interval analysis2. The tool has
been developed using C, C++ and python.

4 Strengths and Weakness

RERS-Fuzz participated in Reachability Track of RERS 2019 competition. The
tool could find out counterexamples for 217 academic reachability benchmarks.
In industrial reachability track, it has emerged as overall winner, scoring 2038
points.

The core strength of RERS-Fuzz is its capability to scale up on large in-
dustrial benchmarks and find sufficient number of error reachable locations. We
have run all sequential and industrial reachability benchmarks for a timeline of

1 https://github.com/csienslab/instrim
2 http://llvm.org/doxygen/Interval 8h source.html
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8 hours on Intel i7 3720 Octa-Core Processor (2.6GHz) and presented our re-
sults. The entry for the specification with error reachable denotes that error
location is reachable. Entries with UNKNOWN denote we are unable to conclude
whether the error location is reachable or not.

Weaknesses involve the inability of the tool to generate proofs for unreach-
ability of error location. Besides that, we have observed that running certain
benchmarks for a longer time period can yield more number of error reach-
able locations. However there are no assurances that preserving test-inputs with
newer state-space or branch-pair would definitely aid to uncover error-reachable
locations during evolution. With our technique, we try to maximize a stronger
notion code-coverage and state-space coverage of RERS benchmarks. Today, our
tool lacks focused search towards reachable error location. We believe that in
future, such problems can be modelled as appropriate fitness function and hence
fuzzing can be made directed. Also, such high quality test-vectors would defi-
nitely aid various invariant learning algorithms, which in turn would help prove
correctness of such reactive software.
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