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Abstract—Most of the Automatic Test Pattern Generation
(ATPG) algorithms for digital circuits rely heavily on netlist
description that comprises both network interconnect structure
among logic gates and the functionality of each gate. The
performance of an ATPG tool on a circuit-under-test (CUT)
C is determined by the size of the test set T and its fault
coverage (FC). Despite extensive research in the field of testing,
the following question remains unanswered: Is the structure or
the functionality of C dominant in determining FC of a test-set
T for C? In this paper, we present empirical evidence in favour
of the dominance of structure on FC by randomly selecting a
logic gate from a synthesized netlist for C, and replacing it by a
different type of gate. Our experiments provide an un-intuitive
result that FC of a test-set T for C under the single stuck-at fault
model remains nearly the same on other sibling circuits that have
identical structure as of C but with different gate functionality,
provided these have similar extent of fault redundancy. This
observation supports the view that feeding structural information
alone may suffice to train machine-learning models that are
currently being used to expedite different problems of digital
circuit testing and diagnosis.

Keywords—ATPG, Engineering Change Order (ECO), Fault
Coverage (FC), Stuck-at Fault (SAF)

I. INTRODUCTION

With rapidly increasing complexity of ICs, testing, valida-
tion and diagnosis pose serious challenges to test engineers.
In order to overcome inherent complexities, various ML-based
techniques have emerged for tackling a diverse set of problems
in design validation and testing. Most of the state-of-the-
art ATPG algorithms rely heavily on structural network of a
circuit as well as on the functionality of each of its logic
gates. Although such algorithms deploy efficient heuristics,
their scalability with respect to time and resources for large
sized circuits (# gates > 10M ) continues to be a bottleneck.
Moreover, in the light of incremental changes needed during
small Engineering Change Order (ECO), re-generation of
ATPG consumes a great deal of time-bandwidth.

Extensive work was done in the past on designing fault
detection test sets purely from the functional description of
digital circuits, provided their structural realizations satisfy
certain constraints. As an example, generation of a complete
test set for a special class of circuits called unate gate networks
was described in [1]. Designing a Universal Test Set (UTS)
for functionally invariant CUT was reported in [2], based
on the functional description of blocks where the networks

are independent. Recently, researchers have been leveraging
structural information of digital circuits to feed machine-
learning algorithms to explore various classical problems in
VLSI testing. These problems previously required manual
effort of experienced engineers having sheer domain exper-
tise. In a couple of recent works [3, 4], the authors have
used Support-Vector Regression and Graphical Convolution
Networks to predict X-sensitivity during defect-diagnosis
and intelligent test-point insertion to improve overall circuit
testability, respectively. Both the techniques have mapped the
circuit structure into a graph, extracted the structural features
from the graph to train the model and then used it for their
prediction problem. The authors have claimed high precision
and recall score from the trained model. However, there is no
underlying justification of such high accuracy as most of the
features are taken solely from structural attributes of circuit
graph. In this work, we study the variation of fault coverage
of a given test-set obtained for a CUT on similar structure-
preserving circuits. Our empirical evaluation on structurally-
invariant and functionally-diverse circuits has revealed that the
fault coverage of a test set is dominated mostly by structural
properties of the underlying graph rather than functional
differences of the gates present in the net-list.

In the rest of this paper, Section II has a motivational
example in support of our hypothesis. Sections III and IV
introduce the problem and propose the experimental set-up,
respectively. Simulation results appear in Section V. Functional
diversity of test-cases is discussed in Section VI and the
conclusion in Section VII.

II. MOTIVATION

Let us consider gate-level netlists for two circuits C1 and
C2 whose structures are identical, whereas their functionalities
are different, as shown in Fig. 1.

We run ATPG for single stuck-at faults (SAF ) on both C1

and C1 to obtain the respective test sets TS(1) and TS(2) with
nine and eight vectors respectively. By fault simulation on C1,
we observe that FC(1, 1) = 100% and FC(2, 1) = 86.36%.
Similarly, for C2, FC(2, 2) = 91% (due to redundant faults)
and FC(1, 2) = 86.36% (vide Table I for the notation).

The above example motivates us to explore whether for a
set of structure-preserving circuits, a test set obtained for any
one of these provides satisfactory fault coverage for all the
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Fig. 1: C2 is obtained from C1 by replacing 2 of the AND
gates by OR, and two of the OR gates by AND.
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Fig. 2: Fault coverage by sibling test-set vs. random test-set
for the motivating example in Fig. 1

other ones in the set. Further, we compare such fault coverage
with that for a randomly generated test set of same size, as
shown in Fig. 2 for the motivating example in Fig. 1. For each
trial, we plot fault coverage on C2 using a random set of test-
vectors (FC(random)) versus that by a test-set generated for
C1 (FC(sibling)) by ATPG. The plot indicates that the fault
coverage on C2 by an ATPG generated test-set for C1 (which
may be differ with trials), dominates the fault coverage on C2

by a randomly generated test-set.
Our hypothesis is that the gate-level structure of a logic

circuit plays a major role in determining fault-coverage of a
test set rather than the functionality of logic nodes and hence,
similar coverage is expected on structure-preserving circuits
when the same test-set is reused.

In this work, we address the following salient questions:
• Does the structural information of a circuit dominate the

generation of a single SAF test-set by ATPG?
• To what extent the fault coverage of a test set for

single SAFs is impacted when randomly selected gates
are replaced by other gates, keeping the interconnecting
structure unchanged?

III. PRELIMINARIES

We first introduce a few terminologies used henceforth.
Dual Gate D(gi) of a boolean logic gate gi is defined as:
• D(AND) = OR, and vice-versa.
• D(NAND) = NOR, and vice-versa.
• D(1) = 0, and vice-versa.
Sibling Circuit Si(C) of a given circuit C in terms of

its gate-level netlist of a circuit C, is defined as the netlist

TABLE I: Glossary of Notation

Description Notation

Circuit-Under-Test (CUT) C

Logic gate identifier in CUT gi(C)

ith Sibling Circuit of CUT Si(C)

Set of Sibling Circuits of CUT Π(C)

ATPG test-set for Sibling Circuit Si(C) TS(i)

Fault Coverage of TS(i) on Sj(C) FC(i, j)

Number of redundant, testable and overall
faults in Si(C)

νRi ,
νTi , νOi

Redundancy Bin, a subset of Sibling circuits
with νRi greater than m and at most n Rm,n

Normalized boolean difference between Sib-
ling circuits Si(C) and Sj(C)

η(i, j)

obtained by replacing a fraction of its logic gates at randomly
chosen locations, with their corresponding dual gates. Si(C)
denotes the ith sibling circuit of C.

Alpha (α) denotes the fraction of logic gates replaced by
dual gates to obtain Si(C) from C.

Redundancy Bin (Rm,n) denotes a set of sibling circuits,
where νRi the number of redundant faults in these, are greater
than m and at most n.

Normalized Boolean Difference η(i, j) between a pair of
sibling circuits Si(C) and Sj(C) is defined as the ratio of
the number of mismatched outputs between these two sibling
circutis to the total number of outputs. For example, η(i, j) =
1 implies that all the output functions of Si(C) and Sj(C)
are different, whereas η(i, j) = 0 if both the siblings are
functionally equivalent circuits.
A. Objectives

Given a gate-level netlist of a CUT C, a population of
sibling circuits Π(C) is generated for a finite set of values
of (α). An ATPG tool produces a test-set TS(i), ∀Si(C)
∈ Π(C). Our main objectives are to compare

(i) FC(i, i) with FC(i, j) for all Si(C), Sj(C) ∈ Π(C)
where i 6= j.

(ii) functional diversity among the sibling circuits in Π(C).
IV. PROPOSED METHOD

Our main focus is to analyze the exclusive contribution
of network structure and gate functionality while generating
an ATPG test-set for single SAFs. In order to evaluate fault
coverage using a sibling’s test-set, we first require a set
(population) of sibling circuits Π(C) for a given CUT. After
Π(C) is created, we generate a test-set for each sibling using
an ATPG tool and evaluate its fault coverage on all members
of the entire population. In subsequent sections, we discuss
the techniques for generating sibling circuit population and
our approach to compute the fault coverage.
A. Sibling Circuit Generation

For creating a population for sibling circuits, we need a
CUT C, a pre-defined α and the number of siblings σ(α) to
be generated. In order to have siblings with same structural
representation and diverse functionality, we need to ensure that
the range of values of α is large.



It is known that unlike other basic gates, the controllability
at a side input of an XOR or XNOR gate does not impact the
observability of an error arriving at its other input. Hence, we
do not change any XOR or XNOR gate. In fact, there is no
XOR or XNOR gate present in any of the benchmark circuits
(ISCAS85, ISCAS89, ITC99, EPFL) used for our experimental
validation. Further, NOT-gates, if any, cannot be replaced by
other gates. Thus, while generating Si(C) from C, we have
considered replacing only the AND, OR, NAND, NOR gates
by their corresponding dual at random locations.

In Algorithm 1, we present our method for producing
of Π(C), with the objective of creating uniformly varied
functionality in sibling circuits. Once Π(C) is generated,

Algorithm 1: Sibling Circuit Population Generation
Data: Synthesized CUT C; Set A of values of α = {α1, α2, . . . , αt}
;
σ(α), the no. of siblings to be generated for each α

Result: Π(C) - Sibling Circuit Population {
p⋃

i=1
Si(C)}

Π(C)← ∅;
K ← No. of logic gates in C;
for α ∈ A do

numGatesToBeReplaced = bα×Kc
for l← 1 to σ(α) do

Sl(C)← C;
GK ← {gi(C) |i ∈ [1,K]}
for i← 1 to numGatesToBeReplaced do

Step 1 : Choose gate gr(C) randomly from GK .
if gr(C) /∈ {”XOR”,”XNOR”,”NOT”,”BUFF”} then

Replace gr(C) with D(gr(C));
else

Go to Step 1;

GK ← GK − gr(C) ;

Π(C)← Π(C) ∪ Sl(C) ;

Report Sibling Circuit Population Π(C) of CUT C;

we obtain a test-set for each of the sibling circuits using
an ATPG tool and perform fault simulation on all sibling
circuits using the same. Note that following the generation of
Π(C), a thorough evaluation is required regarding the extent
of redundancy caused by gate replacement while obtaining the
sibling circuits. The presence of a relatively large number of
redundant faults in a sibling circuit compared to those in the
original C, can effectively reduce the number of detectable
faults in the former and hence, the size of test-set generated
by ATPG tools would be smaller. Consequently, such a test-
set may fail to ensure high coverage on C or its other
sibling circuits that have fewer redundant faults. Thus, the
underlying irredundant sub-structures of a network might be
drastically affected when large redundancy is introduced due
to gate replacement. Although a test-set generated for a sibling
circuit with low redundancy may provide substantial fault
coverage on another sibling circuit with high redundancy, the
converse may not be true. If a SAF is redundant, during
test generation an ATPG will either announce it as redundant
or abort execution because of time-out. However, as sibling
circuits are structurally invariant, the redundant node in Si(C)
may not be redundant in another sibling Sj(C). Hence, a test-
set generated for sibling circuits having high νRi would fail to
provide good coverage on sibling circuits having low νRi .

B. Binning using Redundant Faults
In order to have fair comparison of fault coverage among

structurally-preserving sibling circuits, it is important that the
amount of redundancy among them are within a comparable
range. Therefore, we impose a constraint while evaluating fault
coverage among the sibling, namely redundancy-binning, and
group them into separate bins based on the percentage of fault-
redundancy. This step ensures that fault coverage is compared
only among those siblings, which are grouped in the same bin,
as given in Algorithm 2.

Algorithm 2: Redundancy-based Population binning and
Test-set Evaluation

Data: Sibling circuit population Π(C) of size p;
B, no. of Redundancy bins.
Result: Set of Redundancy Bins Rbins = {Rm1,n1 , . . . , RmB ,nB};
∀Rmk,nk ∈ Rbins, k ∈ {1, 2, . . . , B}, ∀Si(C) ∈ Rmk,nk ,
FC(i, i) using test-set for Si(C) and
FC(i, j)i 6=j using test-set of its Sibling Sj(C) ∈ Rmk,nk .
for each sibling Si(C) ∈ Π(C) do

Run structural ATPG on Si(C) to generate Test-set TS(i);
Compute νRi , νTi & νOi of Si(C).

Compute νRmin and νRmax, the min. & max. no. of redundant faults
among all Siblings ∈ Π(C) respectively. ;

∆← d(νRmax − νRmin)/Be;
Create B bins Rmk,nk , each with redundancy fault range of ∆ and
initially empty;
for i← 1 to p do

k ← (νRi − νRmin)/∆;
< mk, nk > ← < k, k + ∆ >;
Rmk,nk ← Rmk,nk ∪ Si(C);

for each Rmk,nk ∈ Rbins do
for each sibling Si(C) ∈ Rmk,nk do
∀Sj(C) ∈ Rmk,nk , i 6= j Perform fault simulation using
TS(i), ;

Compute FC(i, i) and FC(i, j)i 6=j .

∀Rmk,nk ∈ Rbins, ∀Si(C) ∈ Rmk,nk ,
Report FC(i, j)i=j , and FC(i, j)i 6=j , ∀Sj(C) ∈ Rmk,nk .

V. EXPERIMENTAL EVALUATION

Simulation experiments on several benchmark circuits
demonstrate that structural information predominates fault
coverage of a test-set and possibly testability measures of
a circuit. Our empirical studies show that SAF-based ATPG
generated test-sets provide considerably good coverage on
structurally invariant and functionally diverse circuit structures
provided they have similar extent of fault redundancy.
A. Set-up

All our experiments are performed on a 4-core 3GHz Intel
Xeon processor with 32GB RAM. The platform operating
system used was CentOS v7.4. We have taken diverse set
of benchmarks from ISCAS85 [5], ISCAS89 [6], ITC99[7]
and EPFL arithmetic and random control benchmarks [8]. We
have used ABC [9] as a synthesis tool along with 180nm
technology library from Cadence. Note that for all sequential
circuits in our benchmark suite, we have considered their full-
scan versions of the same. We have used Mentor’s Tessent
2019.1 ATPG Tool for the purpose of test-pattern generation
and fault simulation. We have implemented Algorithm 1 & 2
using Python3.6. All our experimental artefacts are available
at https://gitlab.com/nanontechResearchTriangle/atpg structural.

https://gitlab.com/nanontechResearchTriangle/atpg_structural


B. Observations and Discussion
In our experiments, we have chosen five distinct values of

α viz. {0.1, 0.3, 0.5, 0.7, 0.9} in order to get functional
diversity among the circuits with the same structure. For
scalable and effective evaluation, we have taken σ(α), the
number of siblings generated for each α (via Algorithm 1)
to be 40. So, for each benchmark circuit we have created 200
siblings. In order to strike a balance between the same amount
of structural redundancy among all sibling circuits of a given
C, we have binned Π(C) into five disjoint bins. We evaluate
the fault efficiency as follows :

(i) For a sibling circuit, measure testable fault-coverage
using ATPG generated test-set.

(ii) Evaluate testable-fault coverage using test-set of the
other siblings of the same redundancy bin.

In Fig. 4, we show statistical plots for overall fault coverage,
fault efficiency and the variation of testable faults with α
for two benchmark circuits. The statistical data for other
benchmarks have been presented in TABLE II. Note that, we
have reported only the median value for overall fault coverage,
fault efficiency and variation of testable faults with α.

1) Effects of alpha: In our experimental findings, for most
of the benchmarks, νRi is minimum for α ∈ {0.1, 0.9}, and
maximum for α = 0.5. This indicates that for a near-optimal
synthesized CUT, fault coverage/redundancy is affected most
when half of the logic gates of netlist are changed randomly.

2) Effects of degree of redundancy: With increasing amount
of redundancy, the overall fault coverage drops down. How-
ever, fault efficiency remains high and small perturbations are
observed across various redundancy bins. Thus, fault coverage
using ATPG generated test-sets and those for other siblings
are comparable. This empirical evaluation consolidates the
hypothesis that the overall fault coverage for a test set remains
minimally affected by random functional changes at gate-level,
and is mostly dominated by the structure of the CUT.

VI. THREATS TO VALIDITY
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Fig. 3: Distribution of η(i, j) among randomly chosen seven
Sibling Circuits of c432, within bin range = (3.67− 68.8]

The number of testable faults decreases as α reaches 0.5.
One may raise a counter-argument that the sibling cir-

cuits in the same redundancy bin could possibly become
functionally near-equivalent, thereby resulting in similar fault
coverage/fault efficiency by a test-set for CUT for its siblings
in our experiment. In the following experiment, we show that
the observed match in FC is neither coincidental nor due to
random functional equivalence. In order to establish functional
diversity, we measure the variation of normalized Boolean
difference η(i, j) among the siblings in the same bin. A diverse
value of η(i, j) indicates higher functional heterogeneity, and
thus favors our hypothesis. In our experimental setup, we have
randomly picked up seven siblings of c432 from a redundancy
bin and computed η(i, j) for all pairs, as shown in Fig. 3. We
used cec module of ABC [9] for measuring η(i, j). On an
average, we notice that all pairs of siblings are almost 50%
functionally different. Similar results have been obtained with
other benchmark circuits.

VII. CONCLUSION

In this work, we have studied how fault coverage (FC)
of a test set is impacted when structure-invariant, functional
perturbations are induced in the gate-level net-list of a CUT.
Our experiments establish a crucial insight that FC is not
significantly degraded under such gate-replacements whenever
fault-redundancy remains similar between a given CUT and
structure-preserving sibling-circuits. Thus, a test-suite for a
CUT is likely to provide high fault coverage when it is ex-
posed to structure-invariant ECO-changes. The study provides
an empirical evidence that structural information of a CUT
plays a major role in determining FC of a test-set rather
than the functional details of each logic node. Therefore, in
various machine-learning experiments related to VLSI test and
diagnosis, where circuit descriptions are needed as inputs, it
may be sufficient to feed only the structural information of
the CUT to achieve accurate predictions. Future work would
involve providing a formal proof that justifies the preservation
of fault-coverage of a test-set amongst structurally-invariant
siblings of a CUT.
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Fig. 4: Overall fault coverage, fault coverage efficiency and testable fault distribution versus α plots for c7552 & sin benchmark
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Table II: Results on Benchmark Suites – Fault coverage (overall and efficiency) w.r.t. redundancy bin;
Average number of testable faults w.r.t. α

*NS: No sibling circuit found for that bin.
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νD: #Faults detected by applied test-set.


	Introduction
	Motivation
	Preliminaries
	Objectives

	Proposed Method
	Sibling Circuit Generation
	Binning using Redundant Faults

	Experimental Evaluation
	Set-up
	Observations and Discussion
	Effects of alpha
	Effects of degree of redundancy


	Threats to validity 
	Conclusion

