
ATPG Binning and SAT-Based Approach
to Hardware Trojan Detection
for Safety-Critical Systems

Animesh BasakChowdhury1(B), Ansuman Banerjee2,
and Bhargab B. Bhattacharya2

1 Verification and Validation Group, TCS Research, Pune, India
animeshbchowdhury@gmail.com

2 ACMU, Indian Statistical Institute, Kolkata, India

Abstract. Combating threats and attacks imposed by Hardware Tro-
jans that are stealthily inserted in hardware systems, has surfaced as a
challenging problem in recent times. Such threats degrade the reliability
and endanger security of the system. Due to scalability issues, Trojan
detection remains an extremely difficult problem, especially, when the
circuit size is large and Trojan sizes are small. Hardware Trojan is surrep-
titiously inserted into the design by selecting a few circuit nodes, where
rare logic value occurs. This makes their detection probability negligibly
small, thereby rendering the arrival of an input combination activating
the same, an extremely rare event. Since the number of such Trojans
may be exponentially large in terms of such rare nodes, almost all state-
of-art techniques suffer from scalability bottlenecks and coverage issues,
while generating test vectors. In this work, we propose a systematic app-
roach to sampling in order to lessen the search space, yet preserving the
diversity of population. We use binning of trigger-population based on
Automatic Test Pattern Generation (ATPG), and invoke Boolean Satis-
fiability (SAT) solvers to generate test vectors with high Trojan coverage.
Simulation results demonstrate the effectiveness and superiority of our
method with respect to prior work in terms of Trojan coverage and the
cardinality of the test set.

Keywords: Hardware trojan · Activation nodes · Trigger instance
Trojan instance · Trigger · Payload · ATPG binning

1 Introduction

Malicious tampering of hardware designs in a digital system with Trojans and
backdoor poses a severe security threat in recent times, endangering the normal
functioning of the system quite unexpectedly [21]. Hardware Trojans (HT) are
additional circuit elements that are stealthily inserted into the design by adver-
saries. During functional operation, the design produces the correct behavior
most of the time for most of the input patterns; however, when certain input
c© Springer Nature Switzerland AG 2018
M. H. Au et al. (Eds.): NSS 2018, LNCS 11058, pp. 391–410, 2018.
https://doi.org/10.1007/978-3-030-02744-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02744-5_29&domain=pdf
https://doi.org/10.1007/978-3-030-02744-5_29

392 A. BasakChowdhury et al.

patterns are fed, one or more outputs produce behaviors that deviate from the
expected values.

An adversary, who intends to insert Trojans for corrupting a design can attack
it at different stages of the System-on-Chip (SoC) life-cycle. In [23], it has been
demonstrated that the use of analog malicious hardware built with a capacitor
and a few transistors may replace digital counter-based triggers and jeopardize
the system. In [3,4,8,20,21], authors have discussed details of the potential stages
of the SoC flow, where Trojans may be inserted. In particular, the phases where
third-party Intellectual Property (IP) blocks are used or technology mapping by
third-party vendors is needed, are more conducive to Hardware Trojan insertion.
In general, the aim of Trojan insertion is:

(a) The erroneous functionality ought not to be easily exposed while performing
conventional manufacturing testing.

(b) The triggering of the Trojan must be an unusual but valid event.

Modifications and tampering done during the pre-silicon stage for Trojan inser-
tion are outside the scope of this discussion. Here, we are mainly focused on
such tampering, that can be non-destructively effected in the post-silicon stage
thereby, modifying the netlist, such that the change in functionality can escape
the normal ATPG test patterns [21]. Thus, one possible way of inserting Tro-
jans by an adversary is to identify certain states or input combinations in the
given circuit, which are extremely rare. Whenever any such state (or input com-
bination) is reached, the Trojan is activated and some unexpected behavior is
observed at one or more primary outputs. The detection of Trojans heavily relies
on how they are modeled and the techniques used to detect them.

In this paper, we explore the problem of test set generation for hardware Tro-
jan detection, using a novel combination of ATPG and SAT. We believe that a
disciplined combination of sampling, ATPG and SAT techniques can serve as an
effective aid in targeting rare Trojans and detection of their insertion points. We
study the shortcomings of the methods in existing literature, and present a novel
approach which can generate quality test sets that increase Trojan coverage to
a great extent, within reasonable CPU time. We present experimental results
to demonstrate the scalability and coverage advantage our method achieves
over others. The rest of the paper is organized as follows. Section 2 describes
prior approaches used for the detection of hardware Trojans. Section 3 presents
our main idea and the methodology proposed to solve this problem. Section 4
presents details of our experimental set-up and results. Section 5 concludes the
discussion with notes on possible future directions.

2 Background and Related Work

In this section, we first present an example to illustrate the problem at hand.
Figure 1a shows a simple combinational circuit free from Trojans. For node G7
to attain the logical value 0, G1 and G2 both have to be set at 0. Similarly for
G8 = 1, both G3 and G4 should be having value 1, and for G11 = 1, all G3, G4,
G5 and G6 should be set at 1.

ATPG Binning and SAT-Based Approach 393

G16

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G12

G13

G14

G15

(a) Trojan-free Circuit

G16

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G12

G13

G14

G15

G11

G8

~G7
T RIGGER

PAYLOAD

T ROJAN

TRIGGER INSTANCE

G15'

(b) Trojan-affected Circuit

Fig. 1. Figure showing Trojan-free and Trojan-affected circuit

Therefore, it can be concluded that the probability of occurrence of the logic
value 0 at G7 is 0.25, i.e. out of every 4 test vectors, there exists only 1 test
vector, which can activate the state G7 = 0. For G8 = 1 and G11 = 1, the
respective probabilities of occurrence are 0.25 and 0.0625. Hence, the combina-
tion G7 = 0, G8 = 1 and G11 = 1, is expected to occur very rarely. In other
words, the state having simultaneous occurrence of these three logic values is
relatively uncommon. Only 1 out of 26 possible test vectors can drive the circuit
to this state (G1 = G2 = 0 and G3 = G4 = G5 = G6 = 1). Such an occurrence
can be appropriately termed as a rare event. Even though the combination is
rare, it must be a valid activation, and the error must be observable at some
outputs. Otherwise, the Trojan will never be triggered, thereby defeating the
whole purpose of the adversarial attacker. Hence, there should exist a test input
that can expose it. In most of the cases, the trigger’s presence can be suitably
modeled by a stuck-at fault (s-a-f). The combination of rare nodes provides a
favorable location for an adversary where a Trojan instance is likely to be cre-
ated. In Fig. 1b, we have created a conjunction of three nodes G7 = 0, G8 = 1
and G11 = 1, where the occurrence of logic 1, is a rare event. Under a par-
ticular input combination, the output of the resultant conjunction will become
high and corrupt the logic value at the output node G15. We first define a few
terminologies used frequently throughout this work.

Rareness Threshold: Using structural analysis of a given netlist, the proba-
bility of occurrence of logic values 0 and 1 at a circuit node can be determined
statically. A rareness threshold value is set to determine the rarity of occurrence
of a logic value at a particular circuit node. We denote this rareness threshold
by θ.

Activation Node: A node where the probability of occurrence of a logic value
is less than the rareness threshold can play a dominant role in creation of a
trigger instance, which in turn can serve as an activation node for a Trojan in
the netlist.

394 A. BasakChowdhury et al.

Trigger Instance: An instance formed by the conjunction of several activation
nodes is termed a trigger instance. The output of the conjunction (AND gate)
is the trigger.

Payload: A node in the netlist, whose logic value is corrupted by the trigger
is a payload. Any internal node or a primary output is a fertile ground for such
logic corruption.

Trojan Instance: A suitable trigger-payload combination is termed as a Trojan
instance. Typically, the output of the trigger is XOR-ed with the payload to flip
the expected logic value at that point, and such a modification creates a Trojan.

Q-Value: Number of activation nodes used to create a trigger instance, denoted
by Q. This value determines the size of the trigger.

Controllability: Controllability of a trigger instance is a measure of hardness
of trigger activation.

Observability: Observability can be defined as how hard/easy is the propaga-
tion of corrupted logic value occuring at a payload, at any Primary Output (PO).

A low-controllable low-observable trigger-payload combination, constitutes
an ideal Trojan. The main challenge arises when an adversary chooses the acti-
vation nodes by setting a very small value to θ; as a sequel, a combination (AND-
ing) of such nodes would become extremely rare to happen. Trojan detection has
been an active area of research in recent times in the hardware security research
community [2,5,6,10,15,17,22]. Significant work has been done in the field of
hardware Trojans, focusing mainly on the insertion strategy and techniques for
detecting them. These include, among others, observing side-channel parame-
ters such as power surge, delay analysis, and path propagation for detecting the
presence of Trojans [1,9,16]. However, most of these techniques fail to detect the
Trojans, especially when there are non-uniform variations of side-channel param-
eters of the golden design in the design-under-test (DUT). Test-based approaches
have also been extensively studied and the derivation of the MERO test pattern
is an important research contribution in this direction [5]. Other techniques such
as ODETTE [2], DFTT [10] and TeSR [15], are also capable of producing efficient
test patterns for detecting Trojans. The authors in [17] proposed an improved
version of MERO aiming to maximize Trojan coverage. Several other techniques
have focused on the prevention of hardware Trojan attacks on a given design
[6,22]. In a very recent work [7], authors have proposed a hybrid technique of
using model checking and ATPG for Trojan detection. However, the threat model
is not very generic. They have considered the output of non scan flip flops (FF)
in a partial scan sequential design, as the point of attack. In our paper, we have
used the same threat model as used in MERO and the improved MERO models,
and hence is completely different from the one proposed in [7]. Therefore, test
generation, in particular, for the threat model used in [7] is beyond the scope
of our work. Nevertheless, our test generation methodology on full scan sequen-
tial circuits is an over-approximated modeling of partial scan designs and can
uncover the Trojan set, based on the threat model proposed for partial scan
design.

ATPG Binning and SAT-Based Approach 395

In this paper, we focus mainly on the development of a scalable test gener-
ation framework for uncovering covertly inserted Trojans. Since the number of
possible Trojan instances can be exponential, determining a test set with sub-
stantial Trojan coverage suffers from severe scalability issues when circuit size is
large. The authors in MERO [5] and Improved MERO [17], have described sta-
tistical and heuristic techniques for generating test pattern to detect hardware
Trojans. In MERO, an N -detect test set is generated for the activation nodes.
Effectively, from a set of random test patterns, test vectors are applied in an iter-
ative manner so that each activation node is excited to the rare logic value at least
N times. Increasing N effectively increase the probability of trigger activation.
As the primary focus is on small sized Trojan instances, the maximum number
of activation nodes that can participate in a trigger instance has been considered
upto four [4,17]. In the improved MERO version, the authors have used genetic
algorithm (GA) combined with payload-aware test generation and a SAT-based
technique for detecting extremely hard-to-detect Trojan instances. Although the
results outperform the MERO-based approach, the framework samples the trig-
ger instances randomly only once from entire population. There are certain open
issues that need to be addressed:

(a) MERO [5], and Improved MERO [17] are evaluated on the ISCAS85 and
ISCAS89 circuits only. In MERO, random 100k test patterns are selected
initially to derive optimized test patterns. In improved MERO, initially
100k trigger samples for ISCAS85 circuits, and 10k instances for ISCAS89
circuits are chosen randomly to generate test vectors. But, when circuit
size increases, one time random sampling may result in poor sampled set
of trigger population. There is a high chance that the sampled population
does not contain all activation nodes, as part of trigger instances.

(b) MERO [5] is a lightweight heuristic framework, which takes care of control-
lability of trigger instances. It does not consider the observability of mal-
functioned logic at the output. In improved MERO [17], payload aware test
vector has been generated. However the process initially optimizes trigger
coverage, and then based on the test vectors generated, pseudo test vec-
tors (PTV) are created to cover feasible payloads. Thus, payload aware test
vector generation gives priority to maximizing trigger coverage over feasible
payload coverage.

Motivated by the above limitations, our main aim is to derive an efficient
and high coverage test-set for detecting Trojans. The detection process has to
be fast and efficient, and take less CPU-time. We consider hardware Trojan
instances that are non-destructively inserted in a logic circuit during the post-
silicon phase utilizing the rarity of activation nodes. To address the coverage
problem, we introduce a well organized, judicious and cost effective sampling
of trigger population. The modified sampling technique ensures that the sam-
pled population contains all activation nodes in right proportion. The initial
population plays a major role, in determining the quality of test vectors gen-
erated. More the variety amongst trigger instances in population, greater is
the heterogeneity of test vectors. Again, for scaling up the process, we use a

396 A. BasakChowdhury et al.

divide-and-conquer strategy called ATPG-binning, which helps in partitioning
the population into disjoint sets and solve a larger problem, by solving multiple
sub-problems. We then generate test patterns using classical ATPG tools for
normal trigger instances and SAT-based techniques for hard-to-detect trigger
instances. SAT-based methods are computationally costly, taking one trigger at
a time. Owing to recent advances in SAT-solving techniques, infeasibility test of
trigger activation can be done in reasonable time. However, there can still exist
very few cases, where SAT-solver is unable to generate result within a speci-
fied time limit. In such cases, we call the trigger as unsolvable. Hence, it is a
reasonable choice to employ the SAT tool on trigger instances declared aborted
by structural ATPG tools. This three step methodology is able to detect a large
number of Trojan instances within a reasonable CPU-time on large sized circuits.
Our method provides a general framework for Trojan analysis that can be used
to warrant certain level of trust and reliability of safety critical applications. The
main contributions of this paper are as follows:

(1) A simple sampling technique to choose an initial trigger population over
which the test vectors are ought to be generated. This sampling technique
guarantees the presence of each activation node in right propotion and more
heterogeneity.

(2) A scalable methodology of test vector generation in the form of ATPG bin-
ning, which takes as input a sampled trigger population. Sampling ensures
that the population is qualitatively and quantitatively good, to generate
high quality test vectors. To scale up the framework on a large trigger pop-
ulation, a divide and conquer strategy called ATPG binning is employed.

(3) The framework tries to improve the trigger and Trojan coverage simultane-
ously. Iteratively, for a given set of test vectors, trigger and payload coverage
are computed, and a subset of them is chosen, ensuring high coverage of both
parameters. This is done in both steps, during ATPG binning and SAT.

3 Methodology

We now present a detailed methodology of test vector generation for Hardware
Trojan detection. Our discussion has been broadly divided into three main sec-
tions:

1. Static analysis and initial sampling of trigger population.
2. Test generation using ATPG binning.
3. SAT-based test generation for hard-to-detect triggers.

3.1 Static Analysis and Initial Sampling

Initially, we analyze the circuit statically, using structural analysis. For proper
identification of suitable trigger candidates, we determine the probability of
occurrence of logic values, 0 (Pzero), and 1 (Pone), for each node. Figure 2 shows

ATPG Binning and SAT-Based Approach 397

G1 (1/2,1/2)

G2 (1/2,1/2)

G3 (1/2,1/2)

G4 (1/2,1/2)

G6 (1/2,1/2)

G5 (1/2,1/2)

G7 (1/4,3/4)

G8 (3/4,1/4)

G9 (3/4,1/4)

G10
(13/16,3/16)

G11
(15/16,1/16)

G12
(11/32,21/32)

G13
(61/64 ,3/64)

G14
(1/16,15/16)

G15
(1985/2048,
63/2048)

G16
(979/1024 ,
45/1024)

Fig. 2. The probabilities of a line being at logic 0 and 1 are shown as (Prob0, Prob1)

the probability values of logic 0 and 1 for all nodes in a typical netlist. We
adopted the framework given in [19] to determine rarity of logic values at nodes.
The rareness value has to be properly defined at the user end. Based on the
rarity value, rareness threshold θ, is set, which roughly furnishes a measure of
Trojan stealthiness. Suppose, Attacker 1 chooses θ1 = 0.1 and Attacker 2 chooses
θ2 = 0.4, w.r.t the netlist shown in Fig. 2. For Attacker 1, creating a trigger with
a combination of four such nodes would have activation probability value in the
range [(0.1)4, 0.1]. Whereas, for Attacker 2, the activation probability is quite
high, i.e. [(0.4)4, 0.4]. Higher the activation probability values, higher are the
chances of Trojan getting exposed during regular test application. The detailed
mathematical proof regarding the probability values associated with the activa-
tion of trigger and Trojan instances, have been shown in [5].

Once the design is statically analyzed, all nodes having either Pzero or Pone

value less than θ, are identified. These nodes are called as activation nodes,
and constitute candidates of trigger instances. We now define the parameters
associated with trigger population and activation nodes.

(i,Li): The tuple is a representation of an activation node and its associated
rare logic value. i denotes the node name, and Li denotes the rare logic value.

Activation Node Set R: Set of all activation nodes in a given netlist N .
R = {(i,Li),∀i ∈ N and P (Li) < θ}.

In literature, it is already established that a Trojan created from a trigger
instance having a large Q-Value, is easily detectable with side channel analysis.
But, when the trigger-size is small (Q < 5), the false positive rate is alarmingly
high. Therefore, testing based approaches are tightly coupled with side channel
analysis techniques to uncover more trojans. We proceed with our methodology,
keeping our focus on small sized Trojans. Accordingly as in literature, we restrict
our choice of Q-Value up to 4.

Even though the Q-Value is low, the search space of trigger instances is
exponential in terms of the number of activation nodes of a circuit. For Trojan
instances, it is again multiplied by another exponential factor of number of pos-
sible payloads. Hence, it is practically infeasible to generate test vectors covering
the entire population. This demands the necessity of a quality sampled trigger

398 A. BasakChowdhury et al.

ABCD
ABDF
ABFZ

ABCD
EFGH
IJKL

ABCD
EFGH
IJKL

All Possible Trigger
Combinations

taking 4 activation node
 at a time. Activation

Nodes Set
{A,B,C,D,E,F,G,H,

I,J,K,L}

ABEF
GHIK
EFJL

ACKL
BFHI
DGLE

Random
Sampling

Proposed
Sampling

ABEF
GHIK
EFJL

CDGF
KCDG
CDAB

Sample 1

Sample 2

Sample 3

Sample 4

Sample 1

Sample 2

Sample 3

Fig. 3. Sampled sets of trigger using random sampling and proposed sampling.

population, which can ensure decent coverage over entire search space. Rather
than going for random sampling, we propose a novel strategy of sampling trigger
instances to generate a quality initial sampled set. We now describe, how and
why our modified sampling technique is capable of generating good quality test
vectors.

In Fig. 3, we have presented an example of the modified sampling approach.
Initially, we have a set of 12 distinct activation nodes. Taking Q-Value = 4,
there can be

(
12
4

)
possible trigger instances. Now, we have the option to take all(

12
4

)
trigger instances as initial population for test vector generation. But, as cir-

cuit size increase, the number of activation nodes increases dramatically. Hence,
intelligent sampling is required out of

(
12
4

)
, for scalability purpose. MERO [5]

and Improved MERO [17] use random sampling of fixed 100k instances. For the
sake of explanation, consider we are interested to sample three trigger instances
out of

(
12
4

)
possible combinations. Now, if we go for random sampling, each time

we may end up having different samples. As shown in Fig. 3, there are 4 different
samples of trigger population that we can possibly get from random sampling.
After a careful observation, one can conclude that both Sample 1 and Sample 2
are quite good. They contain all 12 activation nodes distributed over 3 trigger
instances, whereas, Sample 3 and Sample 4 do not cover all of them. Therefore,
test vectors that are derived by ATPG targeting Sample 1 and Sample 2, would
certainly yield superior coverage over those needed for testing Sample 3 and
Sample 4. Upon close examination, it can be seen that test vectors generated for
Sample 3 will be biased towards activation nodes A and B. Similarly, for Sample
4, it would be biased towards nodes C and D. Hence, with a very high probabil-
ity, test vectors would miss any trigger created with an activation node, missing
from the sampled set. In order to get quality test vectors, it is necessary that
the initial sample population of trigger instances contain enough information,
diversity and lesser correlation amongst trigger instances. We now introduce our
modified sampling approach based on the Q-Value and the activation set R. We
first define some parameters used in our sampling approach.

ATPG Binning and SAT-Based Approach 399

numCountInSampleX: Count of the Activation node X present in trigger
instances of Sampled Trigger Population.

popCount: Minimum threshold count to be maintained for each activation node
present in trigger instances of the sampled trigger population.

Initially, for all activation nodes, the numCountInSample value is initial-
ized to 0. In the first iteration of sampling, a set chooseSet is initialized to R.
Now, Qvalue number of activation nodes are chosen from the chooseSet with-
out replacement. The trigger crafted out of that, is checked whether it is already
present in the Sampled Trigger Population (T). If it is present, the trigger is
discarded. The process of creating new trigger continues, until the new trigger
is absent from T . Then, the trigger is included in T , only if there exists an acti-
vation node a for which numCountInSamplea < popCount. Once the trigger is
included, the numCountInSample value for all activation node in the trigger, is
incremented by 1. Trigger creation using activation nodes from chooseSet con-
tinues, until the cardinality of chooseSet becomes less than QV alue. After that,
the chooseSet is again reinitialized to R, and the process is repeated. Note that,
in one iteration, triggers created will not have any activation node in common.
The sampling process completes when numCountInSample for each activation
node, is at least popCount. In Fig. 3, we have applied our sampling technique and
generated the sampled trigger population, keeping popCount = 1. Such a sample
automatically guarantees better test vector generation as compared to random
samples. Algorithm 1 presents the relevant steps related to static analysis and
the sampling mechanism.

3.2 ATPG Binning

In our methodology, our sampling criteria ensures that quality test-sets are gen-
erated. For generating test vectors for a trigger instance, we model trigger acti-
vation as a single stuck-at fault (s-a-f). We apply stuck-at 1 (s-a-1) fault at the
output of the trigger, and go on to generate test vectors for the same. As the
number of elements in the sampled trigger population is high, it is practically
infeasible for a structural ATPG tool to generate them in one go. To make our
method scalable, we divide the population into smaller disjoint bins randomly.
The set, containing all the bins, is called K. The number of trigger instances
in a bin depends on the maximum number of primary outputs (POs) that an
ATPG tool can handle. This step ensures that we generate efficient test vectors
without hitting the scalability bottleneck.

A typical modified netlist consists of all trigger instances of the bin, addi-
tional inserted as POs, in the original netlist. Now, for each modified netlist
(corresponding to each bin) in set K, a structural ATPG tool is deployed. We
use Deterministic Test Pattern Generation (DTPG) in our test vector generation
approach using structural ATPG. As a result, testcubes are generated, consist-
ing of X(Don‘t Care) terms. The output reports presence of three kinds of
trigger instances: (a) Feasible Trigger Instances, for which test cubes have been
generated, (b) Redundant Trigger Instances, i.e. no test vector exists to acti-
vate the trigger instance (can be safely ignored as infeasible triggers), and (c)

400 A. BasakChowdhury et al.

Algorithm 1. Creation of initial sampled trigger population
Input:

N : Gate level netlist
θ : Rareness threshold
q : Q-Value
popCount : Minimum threshold count of activation node to be present in trigger
instances of Sampled Population.

Output: T : Sampled trigger population.
1: Read gate level netlist of design.
2: for ∀ node i ∈ N do
3: Calculate P zero(i) and P one(i)
4: if P zero(i) < θ then
5: R ← R ∪ (i, 0)
6: else
7: if P one(i) < θ then
8: R ← R ∪ (i, 1)
9: end if

10: end if
11: end for
12: Set R is reported as set of tuples (i,Li), where i is the node and Li is its associated

Rare logic value.
13: Initialize T ← φ.
14: for each activation node i ∈ R do
15: Initialize numCountInSamplei← 0
16: end for
17: while ∃ activation node i ∈ R, s.t. numCountInSamplei< popCount do
18: Initialize chooseSet ← R.
19: while |chooseSet| >= q do
20: Generate a trigger instance TRIG, choosing q tuples from chooseSet, with-

out replacement.
21: if TRIG /∈ T then
22: if ∃ activation node i ∈ TRIG , s. t.numCountInSamplei< popCount

then
23: T ← T ∪ TRIG
24: Increment numCountInSample by 1, ∀ activation node i ∈ TRIG.
25: end if
26: end if
27: end while
28: end while
29: Report set T .

Aborted Trigger Instances, which can be categorized as extremely hard and rare
trigger instances. Structural ATPG tool failed to report whether such instances
are feasible or not. After testcubes generation, we apply a lightweight com-
paction methodology as described in [14] for testcube compaction. We clus-
ter the testcubes based on similarity of skeleton structure, and then construct
the parent testcube set Tx, having four logic values 0, 1, X (Don’t care) and

ATPG Binning and SAT-Based Approach 401

C (Contradict). This compaction is done in order to preserve important test
cubes. The test vector generated from these test cubes would be taken into the
final Trojan detection test-set, based on the coverage efficiency. Let us define
two types of coverages, which we have used to determine the quality of a test
vector, in the rest of the paper.

Trigger Coverage of a test vector is defined as the number of trigger
instances, which can be activated by the application of the test vector.

Stuck-at fault Coverage of a test vector is defined as the number of nodes
in the circuit, whose stuck-at fault can be detected by the test vector.

We now present Theorem 1, which basically relates trigger coverage and
overall s-a-f coverage of a test vector with Trojan coverage.

Theorem 1. Let G be an internal node, which has been XORed by a trigger
instance T . If there is a test vector ti that activates trigger T , and detects a
s-a-f at G, then ti will be able to detect the Trojan consisting of T as trigger
and G as payload.

An illustration of this result is shown in Fig. 4.
As a consequence of Theorem 1, we can expand the parent testcube set Tx,

and calculate the trigger Coverage and stuck-at fault coverage of the generated
test vector. Test vectors providing coverage of unique triggers and stuck-at faults
are taken into the master test-set TA. Now, for each parent testcube in the
compressed testcube set Tx, test vectors are generated by randomly filling up
with 0s and 1s at X bit. For every C (Contradict) bit of the test cube, a pair
of test vectors should be generated, one having 0, other having 1, as shown in
Fig. 5. Now, for each test vector, we check for trigger coverage in the bin, and
s-a-f coverage in the entire circuit. The test vector is included in the master
testset TA, if any new trigger is covered from the bin or the overall s-a-f coverage
of the circuit is increased. After all feasible trigger instances from the bin are
covered, the next p consecutive steps are checked to see if there is any increase
in s-a-f coverage. If there is no increase in s-a-f coverage, we stop adding test
vectors to the master test set TA. The current bin is called explored, and removed
from set K.

Once a bin is explored, for all the test vectors in TA, we check for trigger
coverage of bins already present in K. The triggers, which are covered by TA,
are appropriately removed from their respective bins. Now, the bins are arranged
in decreasing order, according to the number of triggers present. The bin, having
highest number of triggers, is taken into consideration. The process continues
until all the bins are covered. After all the steps are performed, we get the master
testset TA, and the set of aborted trigger instances of all the bins. Figure 6 shows
the overall workflow of our algorithm.

402 A. BasakChowdhury et al.

G1

G2

G3

G4

G5

G6

G7

G8

G11

G10

G12

G14

G9

G13

G18

G19

G20

G21

G15

G17

G22 G23

G24

TRIGGER INSTANCE

G21'
TROJAN

If there exists a test
vector X, such that X

detects a single
stuck-at fault at G21,

and X activates T,
then X is capable of

exposing G21's
malicious logic at

Primary Output G24.

G11

G17

G15

Activation
Nodes

Fig. 4. A test vector covering the single s-a-f at internal node G21 and trigger T can
uncover the Trojan created by the combination of G21 and T.

01XXX10XX0X
1X11XX01XX1
XX110X10X01

..

..

..

..

..

..
10XX0XX0101
011XX01X01X
110XX011X01

XCXX010XXXX
CX10XX10C0X

C0X110XXXC101
1C0XXX01CXX01

11010100101
11100010101
10111000011
01011001101

..

..

..

..

..

..

..

..

..

..

..
010011011000
010101011011
011101011101
011110101000

Testset obtained using
DTPG for a bin.

Compacted testcubes

Testset obtained after expanding
testcubes. A testvector ,

is included in testset, if it covers a new
trigger in bin, or provide more s-a-f

coverage in netlist.

 COMPACTOR EXPANDER

Fig. 5. Compaction and expansion of test cubes for each bin under consideration

3.3 SAT Methodology

SAT-based test generation methodology has been used in recent times, especially
to report test vectors for hard-to-detect faults. A test generation problem can be
suitably converted into a Boolean Satisfiability problem. Owing to efficiency of

ATPG Binning and SAT-Based Approach 403

INPUT : Gate Level
Netlist ,

 Trigger Instance
Set ,

Divide trigger instances , into disjoint
bins. Size of Bin () depends on extent of

additional POs, which ATPG tool can
handle.

Generate modified netlist ,
corresponding to each bin.

 Let be a set, containing all modified
netlists

Is
Empty ?

Choose s.t. Number of uncovered
trigger instances is highest. In case of
more than one netlist, one is chosen at

random.

Run ATPG tool for in DTPG mode.
Testcube set is generated targetting
trigger instances of the bin. Addtionally,

following info are also reported.
 - Feasible Trigger Instances
 - Aborted Trigger instances.

 - Redundant Trigger instances

Update the parameters :

Run fault Simulator using
 . Update
each netlist with

uncovered trigger
instances accordingly.

END

YES

NO

Discard , as infeasible triggers. Now,
cluster the test cubes based on structural
similarity and create parent testcubes for

each cluster. Update
, with parent testcubes only.

Expand , by random filling up of 0s and
1s in position of X. For Contradict bit C,
create two test vector, having 0 and 1,at

those position.
 Let it be called . For each

Check
i) If any new trigger

instance is covered in ?
ii) Overall, s-a-f

coverage increased
for ?

Include in .
Update Trigger

Instance Coverage of
Bin, and s-a-f

coverage

Has s-a-f
coverage
increased
in last
iteration?

Report ATPG Binning
generated testset ,

and Aborted
Fault List

NO

NO

NO

Discard .
Check if all triggers

 in are
 covered?

YES

YES

YES

Fig. 6. Flowchart of ATPG binning algorithm

404 A. BasakChowdhury et al.

powerful SAT-solvers, we use this methodology to report test vectors for aborted
trigger instances reported from the structural ATPG tool.

Using Tseytin transformation, the gate level netlist is converted to Con-
junctive Normal Form. For each aborted trigger instance, CNF clauses are cre-
ated conjuncting the clauses of the original circuit and the clause represent-
ing the trigger. The clauses are then fed to a SAT-solver to check for exis-
tence of any satisfiable assignment. Modern SAT-solvers are able to precisely
arrive at two distinct decisions - SAT and UNSAT, in a reasonable time. SAT
implies that the trigger is feasible. The input test vector can be fetched from the
instance returned from SAT solver. UNSAT denotes no test vector exists for the
trigger.

For increasing the s-a-f coverage, we try to generate M distinct satisfying
instances for each aborted trigger instance, provided it is feasible. We first com-
pute the s-a-f coverage of all M test vectors. Out of M , we choose a subset
SM. Figure 7 shows the coverage of M test vectors, for a typical aborted trigger
instance. The subset SM is chosen such that it provides same overall s-a-f cov-
erage, as that of M vectors. We employ a simple greedy algorithm for creating
SM. Initially, we put each test vector into SM, which covers a unique s-a-f of a
node. Once it is done, overall coverage by SM is computed, and checked to see
if there exists any s-a-f not covered by SM, but still coverable by M. Then, for
each s-a-f still uncovered, we pick a random test vector covering it, and over-
all s-a-f coverage is computed again, including that test vector into SM. This
process continues, till s-a-f coverage of SM is equal to the s-a-f coverage of M .
SM is assigned as M when each of the M test vectors provide distinct coverage.
We repeat this step for each of the aborted instances. The triggers reported as
UNSAT from the SAT solver can be regarded as infeasible trigger instances, and
hence can be neglected. At the end, test vectors generated from SAT and those
from structural ATPG are combined to report the final testset for Trojan detec-
tion. The detailed flow is shown in Algorithm2. This 2-step methodology used
for obtaining the testset ensures high confidence level of coverage of all feasible
triggers and Trojans, given the value of q and θ.

Test
Vectors

Stuck-At Fault
Coverage

Faults
Covered (Net , sa0/sa1)

t1 55% (G1,0),(G2,1),(G4,0),(G5,0),(G8,1)

t2 23% (G8,0),(G3,1)

t3 55% (G1,0),(G2,1),(G4,0),(G7,0),(G6,1)

t4 23% (G5,0),(G8,1)

t5 33% (G8,1),(G3,1),(G2,1)

Subset ()
= { t2 , t3 , t4 }

Coverage Metric for test vectors
generated for Aborted Trigger Instance

Fig. 7. Coverage for test vectors generated by SAT-solver for a typical trigger instance.
SM denotes the subset of test vectors which provide maximum coverage.

ATPG Binning and SAT-Based Approach 405

Algorithm 2. Test generation with SAT-solver
Input:

N : Gate level netlist
TA : Testset TA generated by ATPG binning
I : Aborted trigger instance set
M : Number of distinct test vectors required for each aborted trigger to find efficient
test subset.

Output: TEST final : Combined testset - Testset generated from SAT (TEST SAT) +
Testset generated from ATPG Binning (TA).

1: Read netlist N , do Tseytin transformation and generate CNF of netlist, C.
2: Initialize TEST SAT ← φ.
3: for each trigger instance t ∈ I do
4: Generate CNF for trigger instance t, C′.
5: C′ ← C

∧
C′

6: Initialize numTestV ecGenerated ← 0.
7: testSetForTrig ← φ
8: while numTestV ecGenerated �= M do
9: Check for satisfiable instance for C′.

10: if Instance is SAT then
11: Retrieve test vector, tSAT.
12: testSetForTrig ← testSetForTrig∪ tSAT.
13: C′ ← C′ ∧ ∼ tSAT.
14: Increment numTestV ecGenerated by 1.
15: else
16: Instance is UNSAT.
17: break
18: end if
19: end while
20: if numTestV ecGenerated == 0 then
21: Trigger instance is infeasible.
22: else
23: Generate ‘s-a-f’ coverage metric for each test vector ∈ testSetForTrig.
24: Choose a subset SM from testSetForTrig, which maximise the overall

‘s-a-f’ coverage.
25: TEST SAT ← TEST SAT ∪ SM.
26: end if
27: end for
28: TEST final ← TEST SAT ∪ TA
29: Report testset TEST final.

4 Experimental Results

We carried out simulation on combinational benchmarks from ISCAS-85, and
sequential benchmarks from ISCAS-89 and ITC-99. All sequential circuits are
taken in full scan mode. The framework is developed in C++ and Python and
the experiment has been carried out on a Linux Workstation with Intel Xeon
E5 3 GHz Processor and 32 GB RAM. We used the Transition Probability Cal-
culation (TPC) [18] tool from trust-hub.org. The tool takes a circuit netlist as

406 A. BasakChowdhury et al.

input, statically analyses the structure and reports the probability of occurrence
of 0 (Pzero) and 1 (Pone) for circuit nodes. We next selected the value of the
rareness threshold. For the sake of comparison with previous state-of-art tech-
niques MERO [5], Improved MERO [17], we took θ = 0.1 (for ISCAS-85 circuits)
and 0.01 for full scan ISCAS-89 and ITC-99 circuits respectively. The Q-Value
was taken as four, and popCount = 5000 for our experimental results. The val-
ues of Q-Value, θ, and popCount taken in this set-up, ensure the test generation
is targeted for those Trojans, which are rare and remain hidden during nor-
mal ATPG test. An appropriate popCount value is taken to ensure sufficient
presence of all activation nodes in the sampled population. However, increasing
popCount value is going to increase initial population. Depending on the need,
the parameter can be suitably tuned to get enough diversity. The set of acti-
vation nodes is fed to program genTrojanComb, that generates sampled trigger
population. The sampled population is then divided into several disjoint bins
by dumping them into individual files. The Bin Size B, is determined by the
limit of the ATPG tool. In order to harbour more POs, we modified the source
code of the ATALANTA ATPG tool [11] to process maximum number of POs
in a single run. The original netlist along with a bin are provided as input to
the program TrojanInjection, that outputs the modified netlist. The process is
repeated for all the bins and the output generated at the end contains a set of
modified netlists K. Thereafter, the ATPG Binning Algorithm is deployed on
the set K for end-to-end run using structural ATPG ATALANTA, compactor
[14], expander and HOPE fault simulator [12]. At the end, we get testset TA,
aborted trigger instances I and redundant trigger instances. All redundant trig-
gers can be safely ignored as infeasible/false trigger instances. Aborted trigger
instances can be considered as hard-to-trigger instances, owing to failure of test
vector generation in a stipulated time. We used the SAT-solver to generate test
vectors, for the triggers present in the aborted fault list I. For each trigger in
I, the instance, along with the original netlist is fed to a createSATInstance
tool. The SAT-formulation for the trigger instance is then fed to the SAT-solver,
zChaff [13]. A Python wrapper has been used over zChaff, to produce M distinct
input vectors for a trigger instance. In order to produce distinct test vectors in
each iteration, the test vector tSAT generated in the current iteration is negated
and then conjuncted with existing CNF. This ensures the same test vector is not
generated twice. To maintain the trade-off between computation time, number
of test vectors, and s-a-f coverage over the netlist, we take value of M = 5. Once
the test vectors are generated for a trigger, the coverage is computed and SM is
determined. The iteration continues till all the aborted triggers are covered. The
test vectors generated by the SAT-solver are then combined with testset TA, to
report the final test vector set.

The results in Tables 1 and 2 show the effectiveness of the proposed method
over existing test based approaches for Trojan detection. Table 1 presents the
efficacy of the approach on standard ISCAS85 and ISCAS89 benchmarks and
large industrial benchmarks like ITC99. To the best of our knowledge, most of
the techniques have considered only 0.1 million sampled trigger instances, with
no information about quality of initial population. Our technique provides 100%

ATPG Binning and SAT-Based Approach 407

Table 1. Table showing test vectors generated by the proposed scheme. θ is 0.1 for
ISCAS85 combinational circuits and 0.01 for ISCAS89 and ITC99 benchmark circuits.
popCount = 5000 for initial sampled trigger population.

Benchmark

circuits

No. of

activation

nodes

Trigger

instances in

sampled

population

Feasible

trigger

instances

Testset length CPU Time

(in seconds)

Testset

generated

by ATPG

binning

Testset

generated

by SAT

Total

testset

generated

c432 40 57387 56181 534 0 534 0.5

c499 48 71893 4764 1421 15 1436 23.1

c880 62 91964 86192 2097 71 2168 94.2

c1355 112 167231 1432 1876 0 1876 110.3

c1908 65 89267 82141 3387 2967 6534 3005.7

c2670 67 97129 92110 4329 1108 5437 1478.5

c3540 196 261152 193475 4126 2307 6433 9761.2

c5315 176 237084 221885 9029 5467 14496 22721.3

c7552 232 310872 289116 12674 32101 44775 57643.9

s15850 748 1002785 561038 7824 1583 9407 17298.1

s38417 1254 1622398 1209345 38762 10976 49738 68012.5

b14 711 1012654 632093 18943 6584 25527 45019.4

b15 684 1021997 731092 21721 7894 29615 52310.8

b17 879 1255612 910901 25892 9197 35089 57119.6

b20 970 1474958 877213 19373 10176 29549 84081.4

b21 1472 2040812 1484708 27174 9178 36352 77210.6

b22 1736 2480198 1806734 32023 37434 69457 96211.7

Table 2. Table showing trigger and Trojan coverage with proposed scheme. Trojan
sample size - 100K for all ISCAS85, ISCAS89 and ITC99 benchmarks.

Benchmark
circuits

Trigger
coverage (%)

Trojan
coverage (%)

Benchmark
circuits

Trigger
coverage (%)

Trojan
coverage (%)

c432 100 93.12 c7552 79.5 69.51

c499 100 94.1 s15850 77.67 59.09

c880 100 91.87 s38417 71.42 52.8

c1355 99.31 83.67 b14 81.41 63.53

c1908 100 92.3 b17 70.28 60.58

c2670 100 89.1 b20 61.21 52.21

c3540 94.67 78.2 b21 55.78 43.71

c5315 92.81 76.7 b22 53.47 44.1

trigger coverage for most of the ISCAS85 circuits. Table 2 shows the coverage of
trigger and Trojan instances, over various benchmarks. The trigger and Trojan
instances over which coverage results have been shown here, are not part of

408 A. BasakChowdhury et al.

Table 3. Table showing comparison of trigger and Trojan coverage for MERO,
Improved MERO, and the proposed scheme. For MERO, N = 1000. θ = 0.1 (combina-
tional), 0.01 (sequential). Trojan sample size - 100K (combinational), 10K (sequential)

Benchmark
circuits

MERO Improved MERO Proposed scheme

Trigger
coverage

Trojan
coverage

Trigger
coverage

Trojan
coverage

Trigger
coverage

Trojan
coverage

c880 75.92 69.96 96.19 85.70 100 91.87

c2670 62.66 49.51 87.15 75.82 100 89.1

c3540 55.02 23.95 81.55 60.00 94.67 78.2

c5315 43.50 39.01 85.91 71.13 92.81 76.7

c7552 45.07 31.90 77.94 69.88 79.5 69.51

s15850 36.00 18.91 68.18 57.30 79.21 65.18

s38417 21.07 14.41 56.95 38.10 74.61 58.9

the initial Sampled Trigger Population. Our approach shows better coverage
when compared to all previous state-of-art techniques, in terms of trigger and
Trojan coverage, even when the circuit size increases considerably. Table 3 shows
comparative results of our method with MERO [5] and Improved MERO [17].
Both the techniques suffer from poor coverage when circuit size increases.

We now present a comparative analysis for the circuit c7552, for the proposed
method versus state-of-art techniques [5,17]. In Fig. 8a, it is clearly visible that
for every value of θ selected, the proposed scheme provides considerable coverage
than both the previous techniques. Even when θ is lowered, our scheme is able
to uncover triggers almost as twice as the improved MERO version. This is
because our approach considers a good initial sample trigger population. It also
makes sure of the fact that test vectors are not biased towards certain activation
nodes, and trigger population is heterogeneous. In Fig. 8b, Trojan coverage has
been compared with already existing techniques and the proposed scheme, over
a range of rareness threshold θ values. It is noticeable that even for Trojan
coverage, the proposed scheme outperforms the existing techniques.

(a) Trigger coverage (b) Trojan coverage

Fig. 8. Trigger and Trojan coverage chart for c7552

ATPG Binning and SAT-Based Approach 409

5 Conclusion

In this work, we have presented a scalable approach for producing an efficient test
set that is capable of detecting stealthily-inserted hardware Trojans in a digital
circuit. Our method uses a judicious sampling process followed by ATPG-binning
that helps to reduce the complexity of the search process significantly, followed
by SAT-solving for hard trigger instances. The proposed method can take care of
both trigger coverage and feasible payload coverage simultaneously, in order to
improve Trojan coverage significantly. Our technique provides a scalable frame-
work for hardware Trojan detection over a generic threat model.

References

1. Agrawal, D., et al.: Trojan detection using IC fingerprinting. In: IEEE S&P (2007)
2. Banga, M., et al.: ODETTE: a non-scan design-for-test methodology for trojan

detection in ICs. In: HOST (2011)
3. Beaumont, M., et al.: Hardware trojans-prevention, detection, countermeasures (a

literature review). Technical report, DTIC Document (2011)
4. Chakraborty, R.S., et al.: Hardware trojan: threats and emerging solutions. In:

HLDVT (2009)
5. Chakraborty, R.S., et al.: MERO: a statistical approach for hardware trojan detec-

tion. In: CHES (2009)
6. Chakraborty, R.S., et al.: Security against hardware trojan through a novel appli-

cation of design obfuscation. In: ICCAD (2009)
7. Cruz, J., et al.: Hardware trojan detection using ATPG and model checking. In:

VLSI Design (2018)
8. Jacob, N., et al.: Hardware trojans: current challenges and approaches. IET Com-

put. Dig. Tech. 8, 264–273 (2014)
9. Jin, Y., et al.: Hardware trojan detection using path delay fingerprint. In: HOST

(2008)
10. Jin, Y., et al.: DFTT: Design for trojan test. In: ICECS (2010)
11. Lee, H., et al.: ATALANTA: an Efficient ATPG for Combinational Circuits. Vir-

ginia Polytechnic Institute and State University, Blacksburg (1993)
12. Lee, H.K., et al.: HOPE: an efficient parallel fault simulator for synchronous

sequential circuits. In: IEEE TCAD (1996)
13. Mahajan, Y.S., et al.: Zchaff: an efficient SAT solver. In: Theory and Applications

of Satisfiability Testing (2004)
14. Mrugalski, G., et al.: Compression based on deterministic vector clustering of

incompatible test cubes. In: ITC (2009)
15. Narasimhan, S., et al.: TeSR: a robust temporal self-referencing approach for hard-

ware trojan detection. In: HOST (2011)
16. Rad, R., et al.: A sensitivity analysis of power signal methods for detecting hard-

ware trojans under real process and environmental conditions. In: IEEE TVLSI
(2010)

17. Saha, S., et al.: Improved test pattern generation for hardware trojan detection
using genetic algorithm and boolean satisfiability. In: CHES (2015)

18. Salmani, H.: TPC: Transition probability calculation (2011). https://www.trust-
hub.org/

https://www.trust-hub.org/
https://www.trust-hub.org/

410 A. BasakChowdhury et al.

19. Salmani, H., et al.: A novel technique for improving hardware trojan detection and
reducing trojan activation time. In: IEEE TVLSI (2012)

20. Tehranipoor, M., et al.: Trustworthy hardware: trojan detection and design-for-
trust challenges. Computer 44, 66–74 (2010)

21. Xiao, K., et al.: Hardware trojans: lessons learned after one decade of research. In:
ACM TODAES (2016)

22. Xiao, K., et al.: A novel built-in self-authentication technique to prevent inserting
hardware trojans. In: IEEE TCAD (2014)

23. Yang, K., et al.: A2: analog malicious hardware. In: IEEE S&P (2016)

	ATPG Binning and SAT-Based Approach to Hardware Trojan Detection for Safety-Critical Systems
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Static Analysis and Initial Sampling
	3.2 ATPG Binning
	3.3 SAT Methodology

	4 Experimental Results
	5 Conclusion
	References

